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Multispectral UAS Data and Structure from Motion 20 

Abstract 21 
Unmanned Aerial Systems (UAS) have emerged as a platform capable of providing 22 

valuable data on vegetation structure, health, and productivity. The platform provides maximum 23 
temporal flexibility in data collection and customizability of spatial footprints which is 24 
important for mapping and monitoring vegetation conditions especially for high spectrally and 25 
structurally heterogeneous landscapes. In this letter, we investigate the potential improvement in 26 
structural information when using sensor payloads that include infrared bands (730-810 nm) in 27 
addition to the typical visible bands of many UAS sensor payloads. Specifically, we use derived 28 
point clouds and imagery collected from UAS-mounted sensors at a test site in Louisville, 29 
Kentucky, USA to assess whether multispectral sensors improve estimates of vegetation 30 
structure for plant greenness (leaf-on) and senescence (leaf-off) periods. Results indicate that 31 
including detailed multispectral reflectance information beyond the visible portion of the 32 
electromagnetic spectrum aids in estimating structural characteristics of woody vegetation, 33 
regardless of season. While both leaf-on and leaf-off periods result in reasonable crown height 34 
estimates, leaf-on conditions also improve radial estimates, likely due to continuous canopy 35 
surfaces. These findings advance research for remote sensing analyses assessing structural 36 
composition in heterogeneous landscapes where varying levels of vegetation structure have 37 
implications on land use and land function. 38 
 39 
1. Introduction 40 
Remotely-sensed structural information on the environment has transformed scientific 41 
understanding of landscape conditions and phenomena. Early methods specific for collecting 42 
data on ecosystem structure were time consuming and labor intensive (Avery and Burkhartn 43 
2001). However, unmanned aerial systems (UAS) provide flexibility for collection of fine-44 
resolution imagery at low-cost (Zahawi et al. 2015). UAS are effective for quantifying 45 
vegetation structure and estimating fractional vegetation coverage (Cunliffe, Brazier and 46 
Anderson 2016; Mayr et al. 2017). Low altitude flights produce centimetric ground sampling 47 
distances much finer than data collected via satellite platforms. Despite these advantages, 48 
understanding how extending the spectral range of sensor payloads past the typical RGB range 49 
and combination with finer spatial grain and temporal fidelity of UAS data to increase of 50 
structural information in vegetation characteristics is less documented.  51 

Reflectance in the near-infrared (NIR) portion of the electromagnetic spectrum is useful for 52 
analyses of vegetation health and coverage extent (Tucker 1979; Curran 1980). Reflected 53 
energy in the wavelengths between 700 nm and 900 nm can be leveraged to detect 54 
photosynthetically active vegetation, as plant cells with healthy active chlorophyll are excellent 55 
reflectors of energy in this portion of the spectrum (Tucker 1979). In addition, while NIR 56 
reflectance is widely used with other bands for various ratio-based proxies for greenness and 57 
vegetation health (e.g., Normalised Difference Vegetation Index (NDVI)), the red edge (680 - 58 
750 nm) has been found to be one of the best descriptors of active chlorophyll content in remote 59 
sensing (Filella and Penuelas 1994). It is this transition from the red to the NIR where 60 
reflectance is particularly sensitive to phenological changes in productivity and the same 61 
characteristics that make it useful for distinguishing within-flight vegetation characteristics 62 
complicate between flight standardization and comparison. That said, spectral information in the 63 
red edge and NIR are seasonally variable and have potential for informing the extraction of 64 
structural information in a heterogeneous landscape. 65 

In the lab, advances in computer vision and photogrammetric techniques enable researchers 66 
to translate high resolution image datasets into three-dimensional surface information otherwise 67 
unattainable from these data (Dandois and Ellis 2010). Approaches such as Structure from 68 
Motion with Multi-View Stereo (SfM-MVS) have proven capable of creating three-dimensional 69 
point clouds comparable to those acquired through higher cost laser scanning techniques such as 70 
LiDAR (airborne and terrestrial laser scanners) (Salami, Barrado, and Pastor 2014). With the 71 



 

 

SfM-MVS approach, aerial photos with a high degree of overlap are used to identify features 72 
and key points to produce a sparse point cloud (SfM) which is then densified (MVS) producing 73 
a point cloud to be analyzed in the same manner as data collected by LiDAR, the current 74 
standard for three-dimensional data products (Smith, Carrivick, and Quincey 2016). From these 75 
densified point clouds, high resolution two-dimensional products such as orthomosaics, digital 76 
surface models (DSM), and digital terrain models (DTM) can be derived, offering datasets that 77 
can be analyzed similarly to traditional aerial or satellite imagery. 78 

This letter addresses how to leverage the visible portion of the electromagnetic spectrum 79 
along with the transition (i.e. red edge, 730-740 nm) and near-infrared ranges (730-810 nm) of a 80 
modern, UAS-ready sensor for estimating height and radial dimensions of woody individuals. 81 
We analyze forest structure at E.P. “Tom” Sawyer Park, a mixed-use recreation area in 82 
Louisville, Kentucky, USA and compare tree crown delineations and classification of vegetation 83 
based on structural characteristics from two different time periods representing periods of 84 
greenness (leaf-on) and senescence (leaf-off). We investigate whether height and crown 85 
estimates using SfM-MVS point clouds derived from data collected beyond the visible spectrum 86 
into the near infrared (NIR more closely resemble in situ measurements within a region of 87 
interest.  88 

  89 
2. Data and methods 90 
 2.1 Study area 91 
 The test site chosen was a plot located in E.P. “Tom” Sawyer state park, a mixed-use recreation 92 
area in Louisville, Kentucky offering opportunities for measurement of various vegetation 93 
structures, such as trees, shrubs, and grasses (Figure 1). An unkept portion of the park was 94 
chosen to more closely resemble less managed landscapes. Flights conducted during senesced 95 
conditions (November 2017) and leaf-on conditions (July 2018) provide opportunities for 96 
methodological comparisons of the influence of multispectral data collection beyond the visible 97 
portion of the spectrum and seasonality in a site dominated by deciduous vegetation.  98 
 99 
2.2 UAS data 100 
The platform utilized for this study was the DJI Mavic Pro, a micro quadcopter, outfitted with 101 
two sensors: a three-axis gimbal stabilized 12-megapixel RGB camera attached to the 102 
quadcopter itself (DJI, Shenzhen, China), and the Parrot Sequoia multispectral sensor mounted 103 
below the aircraft with a sunlight irradiance sensor mounted above. Well within the payload 104 
capacity of the platform, this sensor collects narrowband imagery in green (530-570 nm), red 105 
(630-670 nm), red-edge (730-740 nm), and near-infrared (NIR) (770-810 nm) portions of the 106 
electromagnetic spectrum (Micasense 2018).  107 

One flight was conducted in early November with the goal of capturing images exhibiting 108 
high spectral heterogeneity due to varying levels of senescence across many species present in 109 
the plot, and a second flight conducted in late July captured full leaf-on conditions with closed, 110 
continuous canopy surfaces in many parts of the study area. The November flight was 111 
conducted in overcast conditions and the July flight in clear conditions. Both ideal for 112 
consistency among data collected via UAS survey, differences in light and reflectance are 113 
normalised through the use of the sunlight irradiance sensor included in the Parrot Sequoia rig 114 
described above (Pix4D 2017). 115 

Pre-programmed flight plans and the autonomous capabilities of the DJI Mavic Pro were 116 
used for 200 x 200-m double-grid flight patterns at 100-m altitude and navigated using on-board 117 
GNSS and the Mavic’s inertial measurement unit. Photos were captured to ensure 85% frontal 118 
overlap and 70% side overlap at minimum, sampling the study area according to 119 
recommendations for UAS image acquisition in the SfM-MVS workflow suggested in the user 120 
manual (Pix4D 2017). Flights were conducted at midday to minimize shadow effects and 121 
images obtained exhibited ground sampling distances of ~3.7 cm (Mavic RGB sensor) and 122 
~10.4 cm (Parrot Sequoia).  123 
  124 
2.3 UAS data processing  125 



 

 

Images collected from both sensors were processed using Pix4Dmapper version 3.3 software 126 
package (Pix4D, Lausanne, Switzerland). Optimal processing parameter values were chosen 127 
through systematic testing of isolated settings to identify deviations from the software defaults 128 
that improved the quality of the output products. With the high resolution RGB point cloud as 129 
the baseline, point clouds generated for each band of Sequoia data were generated and 130 
compared against the point cloud for the Mavic RGB data  with respect to agreement with in 131 
situ measurements. We assume that higher spatial resolution of RGB data in bands that overlap 132 
between sensors (green, red) will provide stronger estimates, but to identify the utility of the 133 
Sequoia data, particularly in the red edge and NIR bands, point clouds for each band were 134 
analyzed individually. 135 

Geolocation of each point cloud was performed within the Pix4D SfM workflow by 136 
leveraging location information stored in the EXIF tag of each photo. Using the on-board 137 
navigation system of the Mavic as well as the internal GNSS within the Parrot Sequoia, point 138 
clouds were accurately placed in three-dimensional space without the use of ground control 139 
(Turner, Lucieer, and Wallace 2014). This method provides reasonable location accuracy (sub-140 
meter) in a small fraction of the time required for an intensive ground control survey (Padró et 141 
al. 2019).  142 

 143 
2.4 In-situ data collection methods 144 
At the test site, a total of 34 woody individuals were opportunistically sampled based on access 145 
to a clear line of sight for both the stem and top of the crown. Stem locations were recorded at 146 
sub-meter accuracy using a Garmin R1 GNSS receiver (Garmin, Olathe, KS, USA) and heights 147 
were estimated by taking the mean of three height measurements taken using a Leica Disto 810 148 
rangefinder (Leica Geosystems, Aarau, Switzerland). In the four cardinal directions, crown 149 
radial measurements were recorded for each woody individual. Due to inherent location error, 150 
resulting tree crown polygons were moved manually to align with the individuals measured in 151 
the imagery. 152 
 153 
2.5 Delineation of woody individuals 154 
Testing the influence of spectral information beyond that of the visible portion of the spectrum 155 
on delineation of woody individuals is addressed through analysis of each point cloud produced 156 
through the SfM-MVS process. Densified point clouds for the RGB Mavic imagery as well as 157 
each narrowband sensor of the Sequoia were analyzed using the ENVI LiDAR version 5.2 158 
software package. Trees were estimated by providing the software simple threshold information 159 
for both height and radial metrics. This study defines tree heights between 3 and 50 m and radial 160 
measurements between 1 and 6 m. These thresholds were chosen to be representative of mature, 161 
non-shrub woody species, representative of many that may be present in field site locations 162 
across temperate- and savanna-based forest environments. Point clouds were used to derive a 163 
DSM and DTM from which a canopy height model (CHM) is estimated by subtracting the 164 
DTM from the DSM. Maxima that lie above set thresholds that do not exhibit shape and textural 165 
characteristics similar to buildings or power lines are classified as trees. Through this local 166 
estimation of tree canopies, heights and radial dimensions of each estimated tree produce an 167 
associated vector for proceeding analysis. 168 

A selection query used to detect tree vectors that intersected in situ measurements served to 169 
reduce the total number of output vectors to those that overlapped in situ measurements. 170 
However, due to the highly condensed nature of the vegetation in the study area and possibility 171 
of detecting multiple height maxima within a single crown, overlapping tree vectors were 172 
common, thus requiring subsequent manual analysis to reduce these clusters individually and 173 
visually identify the single estimate produced that would best serve as representative for in situ 174 
measurements in these instances. This process allowed for in situ measurements to be directly 175 
compared to vector output from ENVI LiDAR. 176 

Additionally, to analyze the accuracy of areas delineated as trees in the ENVI LiDAR 177 
processing, 100 random points were generated and field validated to determine the appropriate 178 
class (tree/non-tree) for each point. Points were differentially corrected to minimize GNSS error 179 
following collection, though still not reduced below decimetric accuracy levels. Comparison of 180 



 

 

the tree vector estimates from the SfM MVS and ENVI LiDAR workflow and field validation is 181 
intended to provide an understanding of associated quantity error (Q) and allocation error (A) 182 
using a confusion matrix following Pontius and Millones (2011).  These measures are meant to 183 
provide measures of disagreement between estimates and validation data in a straightforward 184 
manner, as Pontius and Millones (2011) show the kappa family of indices to be inadequate 185 
although pervasive statistics for describing agreement in land cover analysis. 186 
 187 
3. Results 188 
The November data collected exhibited a Mavic RGB point cloud with an average point cloud 189 
density of 66.85 points/m2 while Sequoia data resulted an average point cloud density of 7.98 190 
points/m2 . Point densities varied substantially between seasons, however, with the Mavic RGB 191 
point cloud density increasing to 197.8 points/m2 and Sequoia point clouds decreasing in 192 
density slightly to 5.55 points/m2 in the July datasets. 193 

The total number of in situ measured woody individuals estimated by these point clouds 194 
ranged from 25 to 32 of 34 measured depending on the spectral band and season. No one band 195 
or season combination successfully estimated all woody individuals but the RGB and red edge 196 
had the highest estimated sample at 32 in the senesced and leaf-on periods respectively. Visual 197 
assessment of the output also revealed that trees were overestimated at times. Based on the 100 198 
random points identified as tree/non-tree, the allocation disagreement was minimized 199 
marginally by the red and green point clouds in November (A = 0) and the RGB in July (A = 200 
0.04). Quantity disagreement was lowest among the RGB data in November (Q = 0.14) and 201 
green data in July (Q = 0.101).  202 

Height estimates among point clouds produced from November data shown in Figure 2 203 
revealed strongest agreement with field measurements as described by the coefficient of 204 
determination (R2) and mean absolute error (MAE) using the red (R2 = 0.66 , MAE = 1.15, n = 205 
29) and green point clouds (R2 = 0.66, MAE = 1.354, n  = 26), followed by the red-edge point 206 
cloud (R2 = 0.6 , MAE = 1.17, n = 25). The NIR point cloud shows less agreement than the 207 
other individual bands (R2 = 0.18, MAE = 1.93, n = 27) but was still minimized error in UAS 208 
estimates compared to the RGB data (R2 = 0.27, MAE = 6.11, n = 32). And while the RGB 209 
point cloud delineated the most tree crowns, it seems there was a systematic overprediction in 210 
height estimates as indicated in the RGB scatter (Figure 2). 211 

The July data exhibit the strongest agreement with using point-rich RGB data (R2 = 0.74, 212 
MAE = 1.941, n = 29) followed closely by the red edge data (R2 = 0.71, MAE = 2.99, n= 32) 213 
and NIR data (R2 = 0.66, MAE = 3.38, n = 33). Performing poorly by comparison were the red 214 
(R2 = 0.55, MAE = 4.36, n = 31) and green bands (R2 = 0.47, MAE = 3.72, n = 31). These 215 
results compared to the November data are consistent with what we would expect due to the 216 
sensitivity of red and NIR reflectance values to vegetation phenology and the presence of active 217 
chlorophyll (Tucker 1979; Curran 1980), as productivity is less variable in the study area in 218 
July. 219 

Direct comparison of results from radial estimate tests are less straightforward (Figure 3). 220 
The most effective datasets for estimating crown dimensions in autumnal conditions was the red 221 
edge point cloud (R2 = 0.63, MAE = 0.97, n = 25) and the red point cloud (R2 = 0.3, MAE = 1.3, 222 
n = 29).  However, the red edge and red datasets only identified 25 and 29 of 34 sampled woody 223 
individuals respectively, a smaller sample than 32 identified using RGB data.  RGB data, while 224 
consistently overestimating radial dimensions, more closely resemble the field data (R2 = 0.07, 225 
MAE = 1.46, n = 32) than green but not the NIR point cloud. Furthermore, each of the point 226 
clouds derived from Parrot Sequoia data severely under predict radial measurements in senesced 227 
conditions, as well as have plots exhibiting heteroscedastic scatter, with greater variation in 228 
estimates associated with larger in situ radial measurements. 229 
 230 
4. Discussion 231 
With such vast differences in point cloud densities and concomitant spatial resolutions, it would 232 
be reasonable to expect inferior results from the Sequoia sensor based on its shortcomings in 233 
spatial detail alone, but the coarser, multispectral data show better ability to describe structural 234 
characteristics, particularly when productivity is variable among species present.  235 



 

 

Providing full canopy surfaces seem to result in stronger delineation efforts due to minimal 236 
within object heterogeneity compared to leaf-off conditions using RGB data. Further, the ENVI 237 
LiDAR algorithm seems better suited for full canopies as all but the RGB data sets exhibit 238 
increases in estimated trees in these conditions. Perhaps these point clouds display stronger 239 
agreement as far as ‘dispersal characteristics’ used to delineate trees (Exelis Visual Information 240 
Solutions 2010). Phenological differences observed in leaf-on conditions provide estimates that 241 
more closely resemble in situ measurements in terms of height for RGB point clouds, but in 242 
both seasons discrete band spectral point clouds (red and green in November; red edge in July) 243 
outperform the RGB despite coarser spatial resolution. Radial estimates using this method seem 244 
a bit noisy, but the seasonal consideration is similar in that under-predictions of radial 245 
dimensions are fewer with leaf-on canopies, providing better surfaces to resolve using the SfM-246 
MVS approach. It is possible that other methods involving various filtering techniques would be 247 
more appropriate for extraction of this component of vegetation structure (Chen et al. 2006; 248 
Lindberg and Holmgren 2017). 249 

Radial estimates are markedly different between data collected in senesced (November) and 250 
full canopy conditions (July). In general, crown radii were better predicted under full canopy 251 
conditions than with data collected in senesced conditions. In July, the red edge data provided 252 
marginally weaker estimates than the RGB point cloud for all metrics despite coarser spatial 253 
resolution. However, these data better capture the quantity of in situ individuals sampled within 254 
the study site, and larger sample sizes are likely to increase disagreement and error metrics. 255 

Due to the varying tree vector sample sizes, MAE, while descriptive, can be misleading in 256 
this context. Interestingly, the RGB sample was reduced from the November flight to the July 257 
flight estimates, while all other sample sizes increased. It is reasonable to expect larger samples 258 
to exhibit higher MAE as there are more opportunities to increase this statistic as sample sizes 259 
increase. A crown estimate that may have been ignored entirely in another dataset holds 260 
potential to skew this statistic, but still has potential to provide an analyst valuable information 261 
regarding land function despite erroneous height or radial measurement where stem count or 262 
recruitment frequency is of interest (Shulz et al. 2018). Despite three times finer spatial 263 
resolution than the multispectral datasets, the RGB data explain only slightly more of the 264 
variation in UAS estimates than the red edge data in full canopy conditions. What is more, 265 
datasets with greater spectral detail data more fully represent the in situ crowns measured during 266 
this season, as well as align better with randomly classified points. These results hold potential 267 
to improve upon studies that seek to quantify above ground biomass or post-fire recovery, for 268 
example, as much of the recent work relies upon the use of an RGB CHM (Alonzo et al. 2018; 269 
Laringa and Brotons 2019). 270 

The manner in which the watershed segmentation is implemented in the ENVI LiDAR 271 
software likely introduced error in radial comparisons, as crown dimensions rarely exhibit 272 
circular conditions in this study area yet are assumed to be symmetric by the software. Field 273 
data includes independent measurements in all four cardinal directions while ENVI LiDAR 274 
crown estimates are produced based upon the extent of the crown as estimated by a boundary 275 
based segmentation of a two-dimensional digital surface model. The radial estimates could 276 
possibly be improved by using methods that more closely resemble true crown dimensions in 277 
multiple axes tools (Dalponte and Coomes 2016). Further, since Delaunay triangulation was 278 
used to create the DSM within Pix4D, underestimated crowns may be prevalent, particularly in 279 
autumnal conditions and results may vary using methods that provide a smoothed output such as 280 
inverse distance weighting. 281 

We expect some location error with respect to validation points despite differential 282 
correction as well as with point clouds as a result of forgoing the use of labor-intensive ground 283 
control. Thus, we consider quantity error to be the most descriptive metric used, as allocation 284 
error is expected. Results of this exercise reveal that the denser RGB point cloud outperforms 285 
the datasets with refined spectral information during the senesced period (QRGB = 0.14), but the 286 
opposite is true in full canopy conditions with all other datasets showing lower quantity 287 
disagreement (QRGB = 0.21, Qgreen = 0.10, Qred  = 0.15, Qred edge = 0.14, QNIR = 0.18). This exercise 288 
suggests that the presence of active chlorophyll and continuous canopy surfaces aid in 289 
estimating fractional woody coverage in largely vegetated sites. 290 



 

 

Results of the tests of quantity and allocation disagreement highlight the importance and 291 
value of the use of rigorous ground control and highly accurate GNSS for analysis of 292 
hyperspatial resolution datasets if trying to validate in the field. The study site was chosen due 293 
to its heterogeneous nature, but the accuracy of the handheld Trimble GeoXT 6000 even after 294 
differential correction, was far too coarse to confidently relate to point cloud estimates with 295 
centimetric resolution, as even a meter or two in any direction can be cause for false 296 
classification. Furthermore, under-predictions in radial dimensions and the circular output of the 297 
estimated crowns leave gaps between trees that could likely be accounted for using more robust 298 
delineation tools (Dalponte and Coomes 2016). But regarding the goal of sampling a study area 299 
using UAS point clouds to estimate metrics of vegetation structure, all point clouds seem 300 
reasonable in terms of providing an objective description of vegetation in a region of interest. 301 
Despite these considerations, this study displays the utility of leveraging NIR data via a 302 
lightweight multispectral sensor for estimating height and radial dimensions of vegetation.  303 
 304 
4. Conclusions 305 
The results demonstrate that detailed spectral information in discrete bands both within and 306 
beyond the visible portion of the spectrum can improve the ability to estimate structural 307 
characteristics of woody vegetation, despite SfM-MVS point clouds being substantially less 308 
dense than RGB data. We conclude that more detailed spectral information within and beyond 309 
the visible spectrum provides more nuance than typically collected with a standard RGB sensor. 310 
Furthermore, information beyond visible light, such as the red edge band, provides additional 311 
information valuable to discrimination between individuals even at relatively coarse resolution. 312 
These results can be considered an initial effort towards determination of appropriate data for 313 
studies of vegetation structure using SfM-MVS and imply that spectral information in the red to 314 
NIR portion of the spectrum is valuable for estimating height metrics of vegetation structure 315 
while employing a structure from motion approach. The methods used here are possibly 316 
applicable precision agriculture (Chu et al. 2018), forestry (Alonzo et al. 2018), or any other 317 
UAS study where vegetation height is of interest and the time-cost of a thorough field survey 318 
too great. Consistent with results of studies that include multispectral information with LiDAR 319 
data to improve tree crown delineation (Lindberg and Holmgren 2017), multispectral 320 
information should be considered for SfM-MVS applications. What is more, off the shelf 321 
products used for UAS sampling can objectively and quickly provide valuable information 322 
about vegetation structure that could potentially be upscaled to imagery with greater spatial and 323 
temporal resolution.  324 
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 442 
Figure 1. Panel a – Location maps for study region (marked by the red star) in Jefferson, 443 
County, Kentucky (highlighted in red) known locally as E.P “Tom” Sawyer State Park. A 444 
portion of the park exhibiting heterogeneity in terms of structure and species was chosen with 445 
the aim of successful delineation between individuals and vegetation types. Panel b displays a 446 
portion of the RGB orthomosaic ( ~3.7cm ground sampling distance (GSD)) and panel c a false 447 
color composite (NIR, red, green) using the Parrot Sequoia data (~10.4 cm GSD). 448 

 449 
Figure 2. Height estimate comparison scatterplots (a-e: November; f-j : July); 450 
Plots a and f display correlation between in situ height measurements and UAS CHM estimates 451 
for the baseline RGB sensor. Plots b-e  and g-j display correlation between field measurements 452 
and UAS CHM estimates for red, green, red edge, and NIR bands of data respectively. All plots 453 
include a 1:1 line for visual aid. 454 

 455 
Figure 3. Radial estimate comparison scatterplots (a-e: November; f-j : July); 456 
Plots a and f display correlation between in situ crown measurements and UAS CHM estimates 457 
for the baseline RGB sensor. Plots b-e  and g-j display correlation between field measurements 458 
and UAS CHM estimates for red, green, red edge, and NIR bands of data respectively. All plots 459 
include a 1:1 line for visual aid. 460 
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 462 

Code available @ https://github.com/neko1010/Tom_Sawyer 463 
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