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During the past few decades, technologies such as remote sensing,
geographical information systems, and global positioning systems
have transformed the way the distribution of human population is
studied and modeled in space and time. However, the mapping of
populations remains constrained by the logistics of censuses and
surveys. Consequently, spatially detailed changes across scales of
days, weeks, or months, or even year to year, are difficult to assess
and limit the application of human population maps in situations
in which timely information is required, such as disasters, conflicts,
or epidemics. Mobile phones (MPs) now have an extremely high
penetration rate across the globe, and analyzing the spatiotem-
poral distribution of MP calls geolocated to the tower level may
overcome many limitations of census-based approaches, provided
that the use of MP data is properly assessed and calibrated. Using
datasets of more than 1 billion MP call records from Portugal and
France, we show how spatially and temporarily explicit estima-
tions of population densities can be produced at national scales,
and how these estimates compare with outputs produced using
alternative human population mapping methods. We also dem-
onstrate howmaps of human population changes can be produced
over multiple timescales while preserving the anonymity of MP
users. With similar data being collected every day by MP network
providers across the world, the prospect of being able to map
contemporary and changing human population distributions over
relatively short intervals exists, paving the way for new applica-
tions and a near real-time understanding of patterns and pro-
cesses in human geography.
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Our knowledge of human population numbers and distribu-
tion for many areas of the world remains poor (1) despite

their importance for policy (2, 3), operational decisions (4), and
research (5–7) across many fields. In the 1990s, a growing in-
terest in the global mapping of human populations emerged (8,
9), leading to the advanced development of methodologies that
undertake the spatial downscaling of human population count
data from censuses summarized over large and irregular ad-
ministrative units to grid squares of 100 m to 5 km resolution
(10–16). Initial efforts to downscale these data used simple areal
weighting methods (10, 17) or dasymetric modeling approaches
(13–15), which use ancillary layers to redistribute population
counts within administrative units (18). Modeling techniques
that spatially downscale population numbers into gridded data-
sets continue to be refined, with basic dasymetric models in-
creasing in sophistication, incorporating multiscale remotely
sensed and geospatial data and making improvements in the type
of statistical algorithms used in the modeling process (19–21).
These detailed population databases have proven crucial for
studies reliant on information about human population dis-
tributions, typically for calculating populations at risk for human
or natural disasters (22–24), to assess vulnerabilities (7, 25), or to

derive health and development indicators (3, 5, 26, 27). However,
despite improvements, these data still have many limitations.
Regardless of how sophisticated these methods are, they re-

main largely constrained by population count data from censuses
that form the basis for the estimation of population distributions
across large areas (10–17). Although the increasing use of global
positioning and geographical information system technologies
has supported the improved collection of census data and their
processing, censuses remain an infrequent and expensive source
of detailed population data. Moreover, for many low-income
countries, the unreliability of estimates, low spatial resolution,
and complete lack of contemporary data represent further lim-
itations. These restrictions mean that the latest health indicators
or estimates of populations at risk often may be based on out-
dated and coarse input population data (26, 28, 29), a particu-
larly restrictive feature when accurate contemporary numbers
may be required for disaster impact assessments, epidemic
modeling, or conflict relief planning. Human populations are
dynamic, moving daily, seasonally, and annually, resulting in
rapidly changing densities. Attempts have been made to model
and map these dynamics for high-income countries (20, 30), but
the data streams upon which such models are based currently are
unavailable to most of the world, particularly resource-poor regions.
The proliferation of mobile phones (MPs) offers an un-

precedented solution to this data gap. The global MP penetration
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rate (i.e., the percentage of active MP subscriptions within the
population) reached 96% in 2014 (31). In developed countries, the
number of MP subscribers has surpassed the total population, with
a penetration rate now reaching 121%, whereas in developing
countries, it is as high as 90% and continuing to rise (31). MP
networks, also called cellular networks, are composed of cells, i.e.,
geographic zones around a phone tower. Each MP communication
can be located by identifying the geographic coordinates of its
transmitting tower and the associated cell. This network-based po-
sitioning method is simple to implement, and its accuracy depends
directly upon the network structure; the higher the density of tow-
ers, the higher the precision of the MP communication geo-
localization (32). Records detailing the time and associated cell of
calls and text messages from anonymous users therefore provide
a valuable indicator of human presence, and coupled with the in-
creasing use of MPs, offer a promising alternative data source for
increasing the spatial and temporal detail of large-scale population
datasets. Data provided by communication tools are opening up
new opportunities for studying sociospatial behaviors (33–36).
MP call detail records were used in the past for studying human
mobility patterns at the individual level (37–39) or for mapping
human movements and activities using aggregated data (40–44).
Most of these studies focused on specific cities or city neigh-
borhoods or groups, and were aimed at understanding traffic
flows (40), mapping the intensity of human activities at different
times (42–44), or exploring seasonality in foreign tourist numbers
and destinations (45, 46). Population movement analyses based
on MP data are particularly promising for improving responses
to disasters (47, 48) and for planning malaria elimination strat-
egies (49–51). However, to date, these data have not been
assessed in their capacity to map human population at fine
spatial and temporal resolutions over large geographical extents.
Using Portugal and France as case studies, this study examines

how aggregated MP data might be used efficiently to map pop-
ulation distributions at the country scale and reveal otherwise
unmeasurable patterns in space and time. We also assess how
such predictions compare with existing state-of-the-art down-
scaling methods. To facilitate widespread use, the methodologies
were designed to be easy to implement while minimizing the
impact of phone use and network coverage heterogeneities
across social groups, regions, and network providers.

Results
The ability of the MP data-based approach to accurately down-
scale census population data was compared with that of an
existing method used to downscale census data through remote
sensing and other geospatial data (19), hereafter called the
“remote sensing” method or RS (SI Appendix, section A.1).
Fig. 1 shows the nighttime maps produced for Portugal using
the MP (Fig. 1 B and E) and RS methods (Fig. 1 C and F),
compared with baseline census-derived population densities
(Fig. 1 A and D). At the national scale, both methods show
similar spatial patterns that match baseline data, with major
cities being clearly identifiable (Fig. 1 A–C). However, the
close-up on the capital city of Lisbon highlights clear differ-
ences in estimated population densities visible at finer spatial
scales (Fig. 1 D–F). The spatial detail of the MP method relies
on the density of towers, which is substantially higher in urban
areas, whereas the spatial detail of the RS method depends on the
spatial resolution of the geospatial datasets used in the mapping
process, which often do not capture intraurban variations.
Precision and accuracy statistics, including the Pearson prod-

uct–moment correlation coefficient (r) and root-mean-square
error (rmse) were calculated to compare the performance of the
MP and RS downscaling methods, using the baseline census-
derived population densities as a reference (Fig. 2). The wider
cloud observed for the MP method (Fig. 2A) indicates a lower
precision, especially in low-density areas. The RS method

produced a higher precision but less accurate predictions, with
an overestimation of population densities in low-density areas
and an underestimation of population densities in high-density
areas (Fig. 2B). Globally, the RS method was found to be more
precise than the MP method (rMP = 0.89; rRS = 0.92). Fig. 2C
shows how the normalized rmse of both methods decreases with
population density. A similar but inverse trend was observed
for r, with a general increase of r values with population den-
sity. Rmse values were always higher for the MP than the RS
method, except in high-density areas. Overall, however, the
MP method was found to be slightly more accurate than the RS
method (rmseMP = 796; rmseRS = 850), given the importance of
densely populated areas in the rmse calculation. As shown in SI
Appendix, section A.3, a combination of both methods further
improved the accuracy of the population mapping, highlighting
the complementarity of the two approaches.
To assess the robustness of the MP downscaling method and

its extrapolation ability, we quantified the impact of the choice of
training data on parameter estimations and analyzed the vari-
ability of parameter estimations within (SI Appendix, section B)
and between countries (SI Appendix, section C.4). The pop-
ulation density (ρc) in a given area c was estimated as a function
of the nighttime MP user density (σc) for that area by ρc = ασβc ,
where the parameters α and β were fitted by a linear regression
based on training data. The parameter α represents the ratio
between MP user density and population density, which is ad-
justed by using the census-derived national population. The pa-
rameter β reflects the superlinear effect of densely populated
areas on human activities. In previously published studies, β was
reported to be slightly below 1 and to show little variation (52–
55). Although these previously published estimates were obtained
based on the number of calls or users per MP tower, rather than on
the density of calls or users in a tower’s covering area, similar values
were expected in our analysis.
By using a standard cross-validation procedure in Portugal,

best-fit estimates of 62.95 ± 2.48 for α and 0.803 ± 0.015 for β
were found, whereas these estimations became 69.11 ± 10.49 for
α and 0.767 ± 0.055 for β when using a spatially stratified cross-
validation procedure (SI Appendix, section B.2). Such a spatially
stratified cross-validation procedure, in which training and test
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Fig. 1. Comparison of predicted population density datasets with baseline
data for mainland Portugal. (A) Population density as calculated from the
national census at administrative unit level 5 (ADM-5; freguesia). (B) Pop-
ulation density at the level of Voronoi polygons, as estimated by the MP
method. (C) Population density at the level of 100 × 100-m grid squares, as
estimated by the RS method. (D–F) Close-ups around the capital city Lisbon.
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sets are sampled from geographically distinct regions (56), allowed
for a quantitative assessment of the extrapolation capacity of the
model (57, 58). Here, the larger confidence intervals obtained using
the spatially stratified cross-validation procedure reflect the impact
of spatially clustered population densities on the estimation of
SEs. This variability is important to take into account when ex-
trapolating the model to a data-scarce and geographically dif-
ferent region. The accuracy and precision of population density
estimates are not sensitive to the estimate of α, as changes in α
values are corrected by total population adjustments. However,
results showed a relatively high sensitivity to the estimate of β,
with an rmse increase of up to 15% for β values within the larger
confidence interval (0.77 ± 0.055) (SI Appendix, section B.3).
Here, however, β was found to be relatively stable both within
and between countries, the best-fit estimates being 0.902 ± 0.036
and 0.846 ± 0.056 in France, using the standard and spatially
stratified cross-validation procedures, respectively (SI Appendix,
section C.4).
To be widely applied and to facilitate the acquisition of MP

data, the method may be simplified by using the density of phone
calls instead of the density of different users over a certain time
window. This was done for data from France, where information
on users was not accessible. Even if the resulting population
density datasets were slightly less accurate—although not always
significantly—the very similar estimated β values (SI Appendix,
section C.2) and the very low spatiotemporal variations in MP
use behaviors (SI Appendix, section C.3) suggest a minimal effect
on population density estimates. Similarly, daily-aggregated MP
data may be used instead of nighttime data when the time of MP
calls is not known, although that may induce higher uncertainty
in population density estimates as the model is calibrated using
census-derived nighttime data. However, the precise accuracy
loss cannot be estimated here, because daytime data would be
required as a reference for accuracy assessment (SI Appendix,
section C.2).
The potential of MP data to estimate population density

variations through time is illustrated in Fig. 3. The relative dif-
ferences in estimated population densities between the major
holiday period (July and August) and more traditional working
periods (from September to June) in Portugal and France reveal
clear spatial patterns (Fig. 3). Seasonal changes in population
distribution are evident: most cities are characterized by a large
decrease in population densities during the holiday period,
whereas less-populated areas and well-known tourist sites, such
as coastlines or mountainous areas, show large increases. Fig. 3E
shows that population densities decrease in Paris, with the ex-
ception of a few spots corresponding to highly visited sites (e.g.,
Disneyland Paris, Charles de Gaulle airport). Maps of daily
and weekly population dynamics in Portugal and France are
shown in SI Appendix, section D. In addition to providing

quantitative measures of how people from densely populated
areas tend to travel toward more low-density and recreational
locations during holidays or weekends, this method also offers
a detailed visualization and quantification of the dynamic pop-
ularity of a given place over time.

Discussion
The increasing penetration of mobile phones and other infor-
mation and communication tools used daily by a large pro-
portion of the global population offers a wealth of new
spatiotemporal data that are contributing to the “big data” rev-
olution. These new data have the potential to profoundly
transform the way we think about and conduct science, especially
geographical analyses, as most of these data are implicitly or
explicitly spatial (59, 60). In operational and governmental
decisions, these data also may be valuable for supporting rapid
responses to disruptive events or longer-term planning purposes.
In the specific application presented here, spatially and tempo-
rally detailed population distribution datasets potentially may
provide the essential denominator required in many fields, such
as studying collective human responses to disease outbreaks (61,
62), emergencies (63, 64), or any application for which in-
formation on daily, seasonal, or annual changes in population
distribution is useful.
This study demonstrates how the analysis of MP data that are

collected readily every day by phone network providers can
complement traditional census outputs. Not only can population
maps as accurate as census data and existing downscaling methods
be constructed solely from MP data, but these data offer additional
benefits in terms of measuring population dynamics. Further,
as highlighted in SI Appendix, section A.3, a combination of
both the MP and RS methods facilitates the improvement of
both spatial and temporal resolutions and demonstrates how
high-resolution population datasets can be produced for any
time period.
In countries where detailed human population census data are

available at high resolution, the main value added is not so much
in the gain in spatial resolution, but more in the ability to esti-
mate population numbers and densities at high spatial resolution
for any time period. This ability allows us to follow how pop-
ulation distribution changes through time in relation to the week,
the season, or any particular event affecting populations over
large spatial extents. The relevance of the MP approach is even
greater in low-income countries where population distribution
data may be scarce, outdated, and unreliable. In Africa, great
variation exists in the quality of spatially referenced population
data. In Malawi for example, censuses have been performed
once per decade for the past three decades and data are readily
available at the level of enumeration areas (i.e., administrative
units of 9.38 km2 on average). In contrast, in the Democratic

A B C

Fig. 2. Precision and accuracy assessments of the MP and RS methods in Portugal. Relation between baseline and estimated population densities using (A)
the MP method and (B) the RS method. (C) Rmses normalized by the average population density of intervals for the MP (blue) and RS (red) methods on
a logarithmic scale. The shaded area represents the absolute population count per interval. Both methods were calibrated on the Norte region (n = 1,425),
and their accuracy was assessed on the rest of the country (n = 1,457).
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Republic of the Congo (DRC), the most recent census was un-
dertaken in 1984 and data are available only at the level of
territories (i.e., administrative units of 12,466 km2 on average).
However, in the DRC, the MP penetration rate, although bi-
ased toward certain demographic groups, is relatively high
[69% on average by the end of 2014 in Africa (31)], and the MP
approach would produce considerable improvements in current
knowledge of how population is distributed in the country.
Even if at present the most remote and isolated populations
may not have reception in some low-income countries, pos-
sibly affecting the ability to produce a comprehensive coun-
trywide map, network coverage continues to grow at a rapid
rate everywhere.
Applying the approach to countries such as the DRC, where

reliable training data may not be available, requires some adjust-
ments and assumptions, particularly regarding the relation between
the MP user density and the population density, through estimates
for the parameters α and β. This relation indeed may vary among
and within countries according to the penetration rate of the net-
work operator and phone use behaviors. Network access costs and
cultural differences among countries may, for instance, result in
communication via text messages being preferred over calls in
some countries. Such differential phone use among countries
might largely be accounted for by adjusting total populations by
using national population counts. A further complication is
that phone use and penetration rates rarely are uniform within
countries. In France, the general penetration rate varies from
62.8 in the Franche-Comté region to 117.9 in Ile-de-France,
according to the Autorité de Régulation des Communications
Electroniques et des Postes (www.arcep.fr; accessed February 2,
2014). Such regional MP ownership information generally is
available either from independent bodies such as regulators or
phone operators themselves, or may be estimated through na-
tional household surveys, such as the Demographic and Health
Surveys (dhsprogram.com; accessed April 1, 2014), and give a
first indication of potential phone use variations among regions.
The spatially stratified cross-validation procedure used here
enables assessment of the impact of regional variations on model
parameters in Portugal (SI Appendix, section B) and France (SI
Appendix, section C.4), as well as the impact of such variation on
population mapping accuracies (SI Appendix, section B.3). Spa-
tial variations in phone use behaviors also may be the result of
economic, social, demographic, or cultural characteristics that
may be spatially clustered, therefore biasing population density

estimates. Although a complete analysis of such potential biases
is beyond the scope of this study, here we showed that phone
use behaviors were relatively stable across space and time in
Portugal and that a large part of the variation is correlated with
population density and therefore is captured by the coefficient β
(SI Appendix, section C.3).
To be applied widely and to facilitate the acquisition of MP

data, the method outlined here may be simplified by using the
density of phone calls instead of the density of different users
over a certain time window. Even if the resulting population
density datasets are marginally less accurate, this approach
allows the method to become independent from user identifier
data and further reduces privacy concerns (SI Appendix, section
C.2). Similarly, using daily-aggregated data instead of night data
again reduces the accuracy of estimates marginally, although
notably simplifying the acquisition and processing of MP data.
The observed robustness of the MP method offers promise for

extension of the mapping to other countries and network pro-
viders. However, applying the method to low-income countries
where penetration rates are increasing rapidly but still exclude an
important fraction of the population would require further sen-
sitivity analyses of the impact of phone use inequalities, espe-
cially as marginalized populations also are the most vulnerable to
disasters, outbreaks, and conflicts. Mobility estimates in Kenya
were found to be surprisingly robust to the substantial biases in
phone ownership across different geographical and socioeco-
nomic groups (65), but these results would need to be con-
firmed for population density estimates.
Mobile phone call data records are collected constantly by

network providers, but the potential of such data is demon-
strated only sporadically. A wider use of such data currently is
impeded principally by privacy and data access concerns. The
use of call data records does raise important privacy concerns
linked to fundamental questions of personal freedom and ethics.
Studies of individual mobility patterns provide little anonymity,
as the movements of individuals can be reconstructed in time and
space, even if spatially and temporally coarsened datasets are
used (66). Here, by using only phone call activity aggregated by
towers, neither individual data nor connections between towers
are used, guaranteeing the privacy of MP users. A facilitated
access to anonymized and aggregated forms of these data would
greatly improve our knowledge of human population distributions
and movements. Network providers sometimes are reticent to
share their data because of privacy and marketing concerns.
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Fig. 3. Seasonal changes in population distribution
in Portugal and France. (A) Location of Portugal and
France in western Europe. (B–E) Relative difference
in predicted population density between the main
holiday period (July and August) and the working
period (September to June) by administrative unit
level 5 (ADM-5) in (B) continental Portugal and (C)
metropolitan France. (D) Close-up around Lisbon
with labels showing the city center of Lisbon and the
seaside resort Costa da Caparica. (E) Close-up around
Paris with labels showing the busiest airport in the
country (Paris Charles de Gaulle), one of the most
visited places in France (Palace of Versailles), and two
popular recreation areas (Disneyland and Asterix Park).
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However, this study has shown that aggregated and anonymized
MP data might cost-effectively provide accurate maps of pop-
ulation distribution for every country in the world for every
month. Partnerships between governments and phone companies
supported by appropriate incentives might enable fast and cheap
production of population maps in emergency contexts, enabling
rapid assessments of populations at risk or those affected by
disasters, disease outbreaks, or conflict.

Materials and Methods
MP and Population Data. Two large datasets of MP calls obtained from
major carriers in Portugal and France were used as proxies for population
activity in the countries. Datasets cover the following periods: July to
August 2007 and November 2007 to June 2008 (10 mo) for Portugal and
May to October 2007 (5 mo) for France. Both datasets contain more than
a billion calls from 2 million users in Portugal (∼20% of the total pop-
ulation) and 17 million users in France (∼30% of the total population).
According to the operators, their penetration rates were uniform over
the country at the time. Only calls were considered here; text messages
were excluded. MP contracts from companies were removed from both
datasets to include only MP contracts of individuals. For each call, the
originating and receiving towers and the day the call was made were obtained.
In addition, the time the call was made and a user identifier were available for
Portugal only. All data used in this study can be obtained for the replication of
results by contacting the corresponding author and are subject to the mobile
phone carrier’s nondisclosure agreement.

Census population data were obtained from the National Institute of Statistics
of Portugal for 2011 (www.ine.pt; accessed January 30, 2014) and from the
National Institute of Statistics and Economic Studies of France for 2007 (www.
insee.fr; accessed January 30, 2014). Census population data were matched to
administrative units with identifier codes. For both countries, the finest admin-
istrative unit level available (ADM-5) was used, which corresponds to “Fre-
guesias” in Portugal (n = 2,882) and “Communes” in France (n = 36,610). The
spatial resolution of administrative units is similar in France and Portugal, with
average spatial resolutions (i.e., square root of the land area divided by
the number of administrative units) of 3.9 km and 5.6 km, respectively.

Mapping People Based on MP Data. For each MP tower j in Portugal, we
know the total number of different users Tj who made or received phone
calls from/to that tower. When one makes a phone call, the network
usually identifies nearby towers and connects to the closest one (67). The
coverage area of a tower j thus was approximated by using a Voronoi-like
tessellation (68). The Voronoi polygon associated with tower j is denoted vj .
The MP user density of the polygon vj , denoted as σvj , then is equal to
Tj=Avj , where Avj is the area of the Voronoi polygon corresponding to
tower j. An illustration of these polygons derived from MP towers is given
in SI Appendix, section A.2.

The estimation of the population density for an administrative unit ci
based on the MP user density σvj is a two-step method. First, the night-
time (i.e., from 8:00 PM to 7:00 AM) MP user density σci for ci is computed
with the following equation:

σci =
1
Aci

X
vj

σvj Aðci∩ vjÞ, [1]

where Aci is the area of administrative unit ci and Aðci∩ vj Þ is the intersection
area of ci and the Voronoi polygon vj .

Second, nighttime MP user density values σci assigned to each adminis-
trative unit were compared with baseline census-derived population densi-
ties available in a training set, denoted as ρci . Our approach is modeled as
follows:

ρc = ασβc , [2]

where ρc = ½ρc1 ,ρc2 , . . . ,ρcn � and σc = ½σc1 ,σc2 , . . . ,σcm �. The parameter α repre-
sents the scale ratio and β the superlinear effect of population density
ρc on the nighttime MP user density σc. This can be transformed to
logðρcÞ= logðαÞ+ βlogðσcÞ, where a standard linear regression model with
population-weighted least squares was applied to estimate the two parame-
ters α and β. The variability of α and β was assessed using standard and spatially

stratified cross-validation procedures (SI Appendix, section B.1). Nighttime
population densities eρc of all administrative units were estimated using Eq.
2, and the total population approximation P̂ was extracted. Nighttime
population densities eρc then were adjusted to make the total estimated
population match the census-derived national population P:

ρc =
P

P̂
ασβc : [3]

Comparison with the RS Method. To assess the accuracy and precision of the
MP method described above, we produced a nighttime population map
based on a recently developed dasymetric modeling approach that incor-
porates a wide range of remotely sensed and geospatial data (called the RS
method in this paper; SI Appendix, section A.1). Ancillary data layers were
used, including the Corine Land Cover 2006 dataset (69), OpenStreetMap-
derived infrastructure (70), satellite nightlights (71), and slope (72), among
others (19). The method combines data in a flexible “Random Forest” model
to generate gridded predictions of population density at ∼100 m spatial
resolution (SI Appendix, section A.1) (19). Analyses have shown that this
algorithm produces improved mapping accuracies compared with previous
approaches (19). The output prediction layer was used as the weighting
surface to perform dasymetric redistribution of the census counts at a
country level as follows (SI Appendix, section A.2):

ρRSi =
wiP
jwj

P, [4]

where ρRSi is the population density in pixel i estimated by the RS method, wi

is the weight assigned to pixel i, and P is the total population.
For comparative purposes, the same spatially stratified training dataset

(“Norte” region) was used to estimate nighttime population densities in
both the MP and RS methods. To assess the precision and the accuracy of
the different population downscaling methods, we extracted the average
nighttime population density within each of the finest level census units
(ADM-5) as estimated by both methods and compared it with the baseline
census-derived population densities (ρc) within each unit by using the
Pearson product–moment correlation coefficient (r) and rmse.

Extrapolation Capacity. To further explore the stability of population density
estimates derived from MP data and the capacity of extrapolation to data-
scarce countries, the method was applied to the France dataset. Here, only
the daily aggregated phone call activity at each tower was used, without
any individual information and without the time of phone calls. This ap-
proach had two benefits: (i ) it ensured that our population density esti-
mation method required only data that were collected readily and stored
by network providers for billing purposes and (ii ) the privacy of network
customers was preserved further. Uncertainties associated with the use
of phone call densities instead of user densities and daily-aggregated
MP data instead of nighttime MP data are evaluated in SI Appendix,
section C.2.

Dynamic Mapping of Population Distributions. Temporal dynamics were de-
rived from MP data by using the timestamp associated with each MP call.
Daily dynamics were analyzed by dividing the MP data into calls performed
during the day (7:00 AM to 8:00 PM) and the night (8:00 PM to 7:00 AM).
Weekly dynamics were analyzed by dividing theMP data into calls performed
during weekdays (Monday to Friday) and calls performed during weekends
(Saturday and Sunday). Seasonal dynamicswere analyzed by dividingMPdata
into calls performed during the holiday period (July and August) and calls
performed during working periods (all other months). Predicted population
densities for each unit and for both time periods were computed using best-
fit α and β estimates, and relative differences between the two time periods
were extracted.
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A. Comparison of methods for mapping human population density 

In addition to the MP-based mapping, human population densities were predicted using more 

traditional modelling methods developed by the WorldPop project1. A semi-automated dasymetric 

modelling approach that incorporates census and ancillary data layers in a flexible Random Forest 

statistical model was applied to generate gridded predictions of population density at approximately 

100m spatial resolution (1). The combination of satellite and other geospatial datasets in a Random 

Forest framework has been shown to produce substantial increases in population mapping 

accuracies over previous approaches (1). 

 

A.1. Mapping human population density using remotely-sensed and other geospatial data (RS 

method) 

Ancillary data layers used as covariates include the CORINE Land Cover 2006 dataset2, 

OpenStreetMap-derived infrastructure3, satellite nightlights4, slope5, amongst others related to 

human population distributions. All data were processed to ensure that projections, resolutions, and 

extents matched. The method combines data in a Random Forest model to generate gridded 

predictions of population density at ≈100 m spatial resolution (8.33*10-4 decimal degrees). The 

Random Forest model is an ensemble, nonparametric approach that generates multiple individual 

classification or regression trees, and from which a final prediction is made based on an average of 

the prediction estimates from individual regression trees (2, 3). By using an ensemble of trees, the 

Random Forest approach provides flexibility for both continuous and discrete data and both linear 

and non-linear relationships between predictor and response variables.  These predictors may be 

included in different combinations across the many regression trees in the forest, chosen at random 

and used to estimate an output weighting layer using only the combinations proven to increase out-

of-bag prediction accuracy. The model is parameterized by aggregating covariates by administrative 

units (from the training dataset) and using them in a semi-automated Random Forest predictive 

model (2, 3) to estimate a population density weighting layer at a spatial resolution of 100 m. This 

prediction layer was then used as the weighting surface to perform a dasymetric redistribution of the 

national population to create a population density surface. Model estimation, fitting and prediction 

were completed using the statistical environment R 3.0.1 (4) and the randomForest package 4.6-7 

(3). 

 

 

 

 

                                                             
1
 WorlPop project: www.worldpop.org.uk [Accessed April 1, 2014] 

2 European Environment Agency (2013) Corine Land Cover 2006 raster data, version 17. Available at: 
http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-3 [Accessed September 16, 
2013] 
3 http://www.openstreetmap.org/ [Accessed September 12, 2013] 
4
 http://ngdc.noaa.gov/eog/viirs/download_viirs_ntl.html [Accessed January 20, 2014] 

5 http://hydrosheds.cr.usgs.gov/index.php [Accessed January 20, 2014] 
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A.2. Schematic illustrations of population density estimation methods 

Figure S1: (A) Illustration of the MP method, where Voronoi polygons are built based on the spatial 

configuration of MP towers. The MP call density of an area (red polygon) is derived from the 

proportion of Voronoi polygons intersecting that area, as described in Equation 1, and the population 

density is a function of the MP user density at night (Equation 2). (B) Illustration of the RS method, 

where a relative weight is assigned to each pixel according to its environmental and infrastructural 

characteristics. The estimated population density of a commune (red polygon) is given by the 

average population density of pixels that fall within the commune. 

 

A.3. Combination of MP and RS methods 

In order to optimize both spatial and temporal resolutions, the MP method developed in the main 

paper can be combined with the RS approach described above. In a first step, we estimated the 

nighttime population of each Voronoi polygon    that corresponds to the coverage area of tower j. 

Then, the population of    is disaggregated to ≈100m grid squares using the Random Forest 

approach described in section A.1. The combination of both methods (COMB) captures the spatial 

details resulting from the RS method, especially in more rural areas where the density of MP towers 

is low, and the spatial details resulting from the MP method, especially in urban areas where the 

distance between MP towers is often finer than the spatial resolution of the geospatial datasets used 

in the RS method (Fig. S2). Here we used the same training (Norte region) and evaluation datasets as 

in Figure 2 of the main manuscript and extracted accuracy statistics. An overall higher accuracy is 

achieved with the COMB method compared to the MP and RS methods (RMSEMP = 796; RMSERS = 850 

and RMSECOMB = 684), while the overall precision is identical to the MP method but lower than the RS 

method (rMP = 0.89, rRS = 0.92 and rCOMB = 0.89). Even though the RMSE is lower for the COMB 

method than the RS and MP methods in densely populated areas, which probably has a high impact 

on the global RMSE, Fig. S3 shows that the COMB method produced less accurate results for a large 

part of the lower population density classes. This is mainly due to discrepancies between the 

distribution of MP user at night and census-derived (i.e. residential) population distribution due for 

example to a higher density of MP users along roads.  
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Note that a few minor improvements such as prohibiting population from water and other 

uninhabited regions are straightforward and would marginally increase the accuracy of the MP 

method.  

 

 
 

Figure S2: Population density at 100 x 100 m spatial resolution, as estimated by the combination of 

the MP and RS methods: (A) mainland Portugal with (B) close-up around the capital city Lisbon. 
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Figure S3: RMSEs normalized by the average population density of intervals, for the MP (blue), RS 

(red) and COMB methods (green). To aid visualisation, RMSEs are plotted on a logarithmic scale. The 

grey line represents the absolute population summed by population density intervals. 
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B. Variability of parameters α and β  

Understanding and quantifying the stability of the estimated parameters   and   is important for the 

method presented in the main paper to be applied elsewhere. As outlined in Equation 2,   and   

were estimated by using a linear regression on training data to model the relation between MP call 

density and population density in each commune. Choosing one particular training set over another 

can lead to different estimations of the parameters as different human behaviours or penetration 

rates can be observed across regions (5).  

Two types of cross-validation procedures are presented here: a standard and a spatially-stratified 

cross-validation procedure (section B.1.). The range of values obtained for   and   (section B.2.) was 

then used to test the sensitivity of population density estimations to these parameters (section B.3.). 

 

B.1. Cross-validation procedures 

In the standard cross-validation procedure, 30% of administrative units were randomly sampled and 

used as a training set to derive   and   coefficients. Accuracy assessment statistics (correlation r and 

RMSE) were calculated on the independent evaluation set consisting of the remaining 70% of 

administrative units. The sampling was repeated 1,000 times in order to provide an assessment of 

the variability of parameters and accuracy statistics. 

 

Because training and evaluation records are selected at random from the dataset, and population 

densities are spatially correlated, even a model with poor extrapolation ability may appear to predict 

well when measured in this way. The ability of a model to make accurate extrapolated predictions in 

new locations would be better measured by performing a spatially-stratified cross-validation where 

training and test sets are sampled from geographically distinct regions (6). 

 

We carried out a spatially-stratified cross-validation procedure by assigning administrative units to 

either the training or evaluation datasets according to whether they fell inside (training) or outside 

(evaluation) a disc of radius 100 km. Discs were placed at random, centred on the location of an 

administrative unit, subject to the constraint that the training and evaluation sets contain at least 

865 administrative units (30% of the total number of administrative units in Portugal). Below this 

threshold, the disc radius was iteratively increased or decreased by steps of 10 km until the minimum 

was reached. This constraint ensured that sufficient data were available to adequately train the 

model and to evaluate its predictive capacity. The disc-fold validation procedure was implemented in 

R (4) using code adapted from the sperrorest package (7).  This disc-fold validation procedure was 

repeated 1,000 times for each model run, and accuracy assessments were computed (correlation r 

and RMSE). 
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B.2. Variability of   and   according to the cross-validation procedure 

The best-fit estimate of 62.95 ±2.48 was found for the parameter   when using a random cross-

validation procedure, while this estimate became 69.11 ±10.49 when using a spatially-stratified 

cross-validation procedure (Fig. S4A). The parameter  , which captures the super linear effect that 

may exist between population density and MP call density, was estimated to 0.803 ±0.015 when 

using a standard cross-validation procedure and 0.767 ±0.055 when using a spatially-stratified cross-

validation procedure (Fig. S4B). Several authors have shown that this parameter is usually slightly 

below 1.0 (8–11). Even though these calculations in the literature have been done on the number of 

calls per MP tower, and not on the density of calls in a tower’s coverage area, we expected similar 

values in our analysis. 

 

 
Figure S4: (A) Alpha and (B) beta coefficients estimated using randomly sampled and spatially-

stratified training datasets.  

 

While the random sampling used in the standard cross-validation procedure has the advantages of 

removing any cultural or economic bias existing between different geographical regions and limiting 

spatial autocorrelation problems in the data, the spatially-stratified cross-validation procedure 

enables reproduction of the initial conditions typically faced by a population distribution modeller 

when applying a model to a data-scarce country where detailed population data are only available 

for one region and the model therefore needs to be extrapolated to a geographically different 

region. In terms of accuracy of population density estimations, our analysis showed that the choice 

of a particular geographical region over another as training data may induce larger variations in 

global RMSE (686 ±173) than the use of a random sample of data for training (574 ±42) (Fig. S5B). 

Differences in correlation coefficient variations between standard and spatially-stratified cross-

validation procedures are less significant, with values of 0.873 ±0.011 and 0.885 ±0.011, respectively 

(Fig. S5A). 
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When detailed training data exist for calibration, errors can be reduced by choosing a training 

dataset (i) representative of the larger area to be mapped and (ii) representing a large diversity of 

population densities. In addition, when allowed by the data, calculating different   coefficients for 

different regions or different population subgroups should be considered. 

 

 
Figure S5: (A) Correlation coefficients and (B) RMSEs calculated using randomly sampled and 

spatially-stratified evaluation datasets.  

 

B.3. Sensitivity analysis of population estimates to α and   

Now that we have a better idea on how   and   values may vary according to the training dataset 

used (see Section B.2), it is important to test the sensitivity of population density estimations to 

these parameters.  While the variability of   might seem important, its impact on population density 

estimations is null, since this parameter is corrected automatically to match the total population of 

the country (Equation 3 in main paper). This is confirmed in Fig. S6A and S6C:  when artificially 

changing the value of   (within the maximum range identified in previous section: 50-90), both the 

RMSE and the correlation coefficient r remain constant. 

 

Unlike  , the sensitivity analysis shows a clear influence of   on the RMSE and r (Fig. S6B and S6D). A 

low value of the parameter   means that a proportionally lower population density is assigned to 

low-density areas compared to high-density areas, which can create large discrepancies in population 

density estimations, with overestimated population densities in urban areas and underestimated 

population densities in rural areas. A large value of   results in the opposite effect: overestimation of 

low-populated areas and underestimation of densely populated areas, resulting in an increasing 

global RMSE. In Figs. S6B and S6D,   values range between 0.69 and 0.86 (maximum range identified 

in previous section). When using values of   within the confidence interval of 0.77 ±0.055 obtained 

with the spatially-stratified cross-validation procedure described above, RMSE values range between 

565 and 655 (15% increase) and r ranges between 0.88 and 0.854. 
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Figure S6: Influence of   and   parameters on the global RMSE and correlation coefficients.  
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C. Flexibility, potential bias and extrapolation capacity  

In this section, we present analyses that have been done to test the flexibility of the MP method in 

terms of input data used, the impact of potential socio-economic bias and the extrapolation capacity 

of the method to other countries. First, we test the ability of the density of phone towers (section 

C.1.), the density of daily-aggregated data and the density of MP calls (section C.2.) to accurately 

estimate population densities. These data can often be more easily acquired from network providers 

than the number of MP users connected to a tower over a certain time window. The objective here is 

therefore to estimate the impact the use of such data would have on population estimation 

accuracies. 

 

C.1. Density of MP towers 

The density of MP towers by administrative unit    was computed with the following equation: 

    
 

   
            
  

 

where     is the area of administrative unit    and          is the intersection area of commune    

and the Voronoi polygon   .  

In Portugal, the density of MP towers is highly correlated to census-derived population densities (r = 

0.794; p < 0.0001), which suggests that using only the density of MP towers would already provide a 

good population density approximation (Fig. S7).  

 

 
Figure S7: Spatial distribution of MP towers (A) in Portugal, with (B) close-up around the capital city 

Lisbon. Census-derived population densities are shown in background. 
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Here we compared population mapping accuracies when using the same MP method as described in 

the main paper, but using the density of MP towers instead of the density of nighttime MP users as 

input data. Results show that population density estimations are significantly less accurate when only 

using the density of MP towers (Fig. S8), with maximum RMSE values being particularly high (> 3,100) 

when using a spatially-stratified cross-validation procedure. In addition, the use of MP towers alone 

does not allow any dynamic mapping. 

 

Figure S8: (A) Correlation coefficients and (B) RMSEs calculated using the density of phone towers 

and the density of users (Rd = standard cross-validation procedure; Sp = spatially-stratified cross-

validation procedure) 

 

C.2. Daily aggregated data and density of MP calls 

The method presented in the main paper uses the density of different MP users during the night (8 

p.m. - 7 a.m.) as input data. However, network providers do not always provide users' identifiers and 

the time of phone calls and such detailed data also reduce the level of anonymity. We therefore 

compared (i) the accuracy of population density datasets created from daily-aggregated data 

compared to nighttime data and (ii) the accuracy of datasets created from MP call data compared to 

MP user data. The goal is to evaluate the ability of very basic and fully-anonymized MP datasets to 

predict human population densities (Figs. S9 and S10).  
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Figure S9: (A) Alpha, (B) beta, (C) correlation coefficient and (D) RMSE calculated when using (i) daily-

aggregated calls (CALL DAY), (ii) daily-aggregated users (USER DAY), (iii) nighttime calls (CALL NIGHT) 

and (iv) nighttime users (USER NIGHT), with a standard cross-validation procedure. 
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Figure S10: (A) Alpha, (B) beta, (C) correlation coefficient and (D) RMSE calculated when using (i) 

daily-aggregated calls (CALL DAY), (ii) daily-aggregated users (USER DAY), (iii) nighttime calls (CALL 

NIGHT) and (iv) nighttime users (USER NIGHT), with a spatially-stratified cross-validation procedure. 

 

Statistical analyses including analyses of variance and Tukey’s honest significant difference tests were 

performed to test for differences between the different datasets used as input data. The Tukey’s 

honest significant difference statistical test is used to identify which means are significantly different 

from the others. This test is based on the range of the sample means rather than the individual 

differences. 

Even if the density of calls and the density of users are very highly correlated in Portugal (r = 0.99, p < 

0001), results show that population density datasets produced using the density of users are 

generally more precise and accurate than datasets produced using the density of calls. However, 
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non-significant differences in RMSE were observed between nighttime calls (CALL NIGHT) and 

nighttime users (USER NIGHT) when using both the standard cross-validation procedure (F=3.745; 

p=0.053) and the spatially-stratified cross-validation procedure (F=0.007; p=0.935), suggesting that, 

during the night, using the density of calls instead of the density of users does not impact 

significantly the accuracy of population density estimates and that the number of calls per user is 

relatively stable during the night. 

Results also show that population density estimates produced using nighttime data were significantly 

more precise and more accurate than estimates produced using daily-aggregated data, with r and 

RMSE statistics being significantly different (Figs. S9 and S10). However, the accuracy assessment was 

done here using census-derived nighttime data as reference, which is not entirely appropriate. For a 

more precise accuracy assessment, we would need daytime data as reference. Nevertheless, 

estimated   values between both day/night and call/user data are very close (and even non-

significantly different when using the spatially-stratified cross-validation procedure), which suggests 

a minimal impact on predicted population densities. When available MP data only include the daily-

aggregated number of phone calls (without information on the number of users or on the calling 

time), as is the case in France, the daily-aggregated number of phone calls can reasonably replace the 

number of users per night, as long as phone usage behaviors are relatively stable across space and 

time. The spatio-temporal variability in phone usage is assessed below for Portugal.   

 

 

C.3. Spatio-temporal variability in phone usage 

In order to assess the variability of phone usage behaviors in time and space, MP users were divided 

into three distinct profiles, each containing about a third of the total number of users (Fig. S11). The 

profiles are based on the number of phone calls they performed at night during the studied period of 

242 days: (i) Type 1 corresponding to low-activity users with less than 13 calls (0.054 per night), (ii) 

Type 2 corresponding to medium-activity users with number of calls between 13 and 68 ([0.054,0.28] 

per night), (iii) Type 3 corresponding to high-activity users with more than 68 calls (0.28 per night). 
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Figure S11: Probability Density Function of total number of night phone calls per user. Mobile phone 

users are divided into three distinct profiles, each containing a third of the users: low-activity users 

(Type 1), medium-activity users (Type 2) and high-activity users (Type 3).  

 

We then analysed the variability in the proportion of users of Type 1, Type 2 and Type 3 in both time 

(Figs. S12 and S13) and space (Figs. S14, S15 and S16). 

 

Figure S12: Variability of user profiles over time. Distribution of proportion of user of type 1 (blue), 

type 2 (red) and type 3 (grey) for each day of the week. 
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Figure S13: Variability of user profiles over time. Distribution of proportion of user of type 1 (blue), 

type 2 (red) and type 3 (grey) for each 2-hour period of the day. 

 

Results show that the proportion of each profile is stable over the week (Fig. S12), but less over the 

day (Fig. S13). Indeed, we observe that the proportion of high-activity users (Type 3) is lower during 

the day than during the night while the proportion of low and medium-activity users (Types 1 and 2) 

is higher during the day than the night. Considering day-time and night-time data separately, as we 

do in our manuscript, is thus important in order to study users with stable behaviors.  

To analyze the variability in the proportion of users of Type 1, Type 2 and Type 3 in space, we used 

three variables that are spatially clustered: the population density (Fig. S14), the unemployement 

rate (Fig. S15) and the percentage of people who hold a higher education degree (Fig. S16). These 

data were obtained from the National Institute of Statistics of Portugal by administrative unit level 5 

(ADM-5) for the year 2011 (12) and were summarized by Voronoi polygon. 
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Figure S14: Variability of user profiles at each mobile phone tower over population density. The 

proportion of low (blue) and medium (red) activity users (  and   ) tend  to decrease in densely 

populated areas, while the proportion of high-activity users (grey) increases (  ). 

 

 

Fig. S14 shows that the proportion of each user profile varies across space, with a higher proportion 

of high activity users (Type 3) than low and medium activity users (Type 1 and 2) in densely 

populated areas. This well-known super-linear effect of population density on human activities is 

captured by the coefficient   in our model. 

The proportion of each user profile also varies with the proportion of people holding a higher 

education degree (Fig. S15), with a larger proportion of high activity users (Type 3) in administrative 

units where the proportion of people holding a higher education degree is higher. However, this 

trend is mainly due to the correlation between the population density and the higher education 

degree (r = 0.52; p < 0.0001), which suggests that the influence of the education level is captured by 

the coefficient  . There is however no clear relation in the proportion of each user profile according 

to the unemployment rate at the mobile phone tower level (Fig. S16), suggesting that unemployment 

rate does not influence the mobile phone behavior of users in Portugal. 
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Figure S15: Variability of user profiles at each mobile phone tower according to the percentage of 

people holding a higher education degree. The proportion of (A) low and (B) medium activity users 

(  and   ) tend  to decrease with the education level, while the proportion of (C) high-activity users 

increases (  ). 

 

 

Figure S16: Variability of user profiles at each mobile phone tower according to the unemployment 

rate. We observe no correlation between unemployment rate and the proportion of (A) low, (B) 

medium and (C) high activity users. 

 

 

C.4. Application to France 

The population downscaling method developed in the present study was applied to France. Instead 

of the number of different users per night, we used here the number of daily-aggregated calls made 

or received from each tower during working periods (May, June, September, October 2007) for 

training the model. We have seen in section C.2. that using daily-aggregated call data had an impact 

on accuracy statistics, though this impact was largely due to the use of residential census data as 

reference for the accuracy assessment. The impact of using daily-aggregated call data on the 

estimation of   was rather low and not always significant. 
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We compared   coefficients calculated using the French dataset with the values we had for Portugal 

(using daily aggregated MP call data) in order to assess the variability of this coefficient between 

countries (Fig. S17). The standard and spatially-stratified cross-validation procedures defined in 

section B.1. were used to derive   and   coefficients for France. In order to use training datasets of 

comparable size for Portugal and France, only 2.5% of the 36,610 administrative units available for 

France were used as training data. Results show that   is higher in France (0.902 ±0.036) than 

Portugal (0.813 ±0.016) when estimated using a standard cross-validation procedure (Fig. S17A), but 

confidence intervals largely overlap when they are estimated using a spatially-stratified cross-

validation procedure, with   values of  0.777 ±0.051 for Portugal and 0.846 ±0.056 for France (Fig. 

S17B). The larger confidence intervals observed for France are due to the higher number of 

administrative units available and the resulting greater diversity of administrative units sampled for 

training models. 

 

In France, two regions (Corse and Provence-Alpes-Cote-d’Azur) are characterized by a particularly 

high proportion of tourists, with rates of camping area per person being the highest for these two 

regions (0.07 and 0.02 for the region of Corse and Provence-Alpes-Cote-d’Azur respectively, while 

the national average is 0.01) (13). When using these regions as training datasets, estimated   values 

are above 1, suggesting that a higher proportion of calls are made in low-density areas than in high-

density areas in these regions. If we exclude these two regions from the training datasets, estimated 

  values are slightly lower (0.894 ±0.035 with a standard cross-validation procedure and 0.842 

±0.046 with a spatially-stratified cross-validation procedure). Choosing a training dataset that 

excludes the main holiday periods and typical tourism areas should thus be considered to reduce 

errors in population density estimates. It would indeed limit the discrepancies between residential 

and temporary population distributions. 

 
Figure S17: Comparison of   estimations in Portugal and France using (A) a standard cross-validation 

procedure and (B) a spatially-stratified cross-validation procedure. 
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D. Population dynamics 

Temporal dynamics were derived from MP data using the timestamp associated to each MP call. 

Daily dynamics were analyzed by dividing the MP data into MP calls performed during the day (7 a.m. 

to 8 p.m.) and the night (8 p.m. to 7 a.m.). Weekly dynamics were analyzed by dividing the MP data 

into MP calls performed during weekdays (Monday to Friday) and MP calls performed during 

weekends (Saturday and Sunday). Seasonal dynamics were analyzed by dividing MP data into MP 

calls performed during the holiday period (July and August) and MP calls performed during working 

periods (all other months). Predicted population densities for each unit and for both time periods 

were computed using best-fit   and   estimates and relative differences between the two time 

periods were extracted. 

The potential of MP data to estimate population density variations through time is illustrated in Fig. 

S18 for Portugal and Fig. S19 for France. Results show clear spatial patterns, such as population 

density increases along highways during the day (Fig. S18A), population density decreases in major 

cities during both weekends and holidays (Figs. S18B,C and S19)  and important population density 

increases along the coast during holidays.  Differences in estimated population densities between 

time periods are particularly important between day and night (Fig. S18A). These differences may be 

influenced by the variations in phone usage behaviors mentioned in section C.3. During the day, the 

proportion of low and medium-activity users is higher in densely populated areas, resulting in a lower 

number of phone calls per user. Such day/night variations are therefore more visible when using the 

number of users than the number of calls. This spatio-temporal variability in phone usage behaviors 

may influence population density estimates and emphasizes that, when data include users' 

identifiers, it is preferable to use the number of users than the number of calls. Some other phone 

usage behaviors may influence day/night variations such as the use of professional phones during the 

day and private phones during the night. Our results suggest that estimates may become more 

uncertain over shorter timescales. 

We observed a positive correlation between the difference in estimated population between the 

holiday and the working periods and the number of tourist accommodations available by commune 

(r = 0.28, p < 000.1). The number of tourism accommodations (secondary residences and occasional 

accommodations, hotel rooms and camping plots) by commune in 2007 were downloaded from the 

INSEE website (www.insee.fr). 
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Figure S18: Relative difference in predicted population density by ADM-5 for different time periods in 

Portugal. (A) Difference between day and night, with brown colors indicating a higher population 

density during the day; (B) difference between weekend and weekdays, with brown colors indicating 

a higher population density during weekends; (C) difference between the main holiday period (July 

and August) and the working period (November-May), with brown colors indicating a higher 

population density during the holidays. 
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Figure S19: Relative difference in predicted population density by ADM-5 for different time periods in 

France. (A-C) Difference between weekend and weekdays. Brown colors indicate a higher population 

density during weekends. (D-F) Difference between the main holiday period (July and August) and 

the working period (May, June, September and October). Brown colors indicate a higher population 

density during holidays. (A,D) Metropolitan France; (B,E) close-ups around Paris;  with labels showing 

the busiest airport in the country (Paris Charles de Gaulle), one of the most visited places in France 

(Palace of Versailles) and two popular recreation areas (Disneyland and Asterix Park)  and (C,F) close-

ups of the Bretagne Region, with labels showing the three most populated cities of the area: Rennes, 

Brest and Nantes. 
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