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Abstract: Gridded human population data provide a spatial denominator to identify populations at risk, quantify
burdens, and inform our understanding of human-environment systems. When modeling gridded population, the
information used for training the model may differ in spatial resolution than what is produced by the model
prediction. This case arises when approaching population modeling from a top-down, dasymetric approach in
which one redistributes coarse administrative unit level population data (i.e., source unit) to a finer scale (i.e.,
target unit). However, often overlooked are issues associated with the differing variance across the scale, spatial
autocorrelation and bias in sampling techniques. In this study, we examine the effects of intentionally biasing
our sampling from the source to target scale within the context of a weighted, dasymetric mapping approach.
The weighted component is based on a Random Forest estimator, which is a non-parametric ensemble-based
prediction model. We investigate issues of autocorrelation and heterogeneity in the training data using 18 dif-
ferent types of samples to show the variations in training, census-level (i.e., source) and output, grid-level (i.e.,
target) predictions. We compare results to simple random sampling and geographically stratified random
sampling. Results indicate that the Random Forest model is sensitive to the spatial autocorrelation inherent in
the training data, which leads to an increase in the variance of the residuals. Sample training datasets that are at
a spatial scale representative of the true population produced the best fitting models. However, the true re-
presentative dataset varied in autocorrelation for both scales. More attention is needed with ensemble-based
learning and spatially-heterogeneous data as underlying issues of spatial autocorrelation influence results for
both the census-level and grid-level estimations.

1. Introduction

A spatially-explicit human denominator provides a foundation for
identifying populations at risk, quantifying burdens, mapping dynamics
of infectious disease and generally informing our understanding of
human distribution and movement, both over space and time (Hay,
Noor, Nelson, & Tatem, 2005; Linard, Gilbert, & Tatem, 2011; Pezzulo
et al., 2016a; Tatem, 2014; Tatem et al., 2012; Tejedor-Garavito et al.,
2017). While reference data for population traditionally comes from
censuses or surveys (Tatem, 2014), the tabulation of the population and
demographic information must then be tied to irregular and varying
sized administrative units for spatial representation (Tatem et al.,
2012). To improve the consistency and comparability of these data,
research advances continue to improve on techniques to grid the data,

creating uniform, areal units for a final raster-based population product
at a given spatial grain (Azar, Engstrom, Graesser, & Comenetz, 2013;
Bhaduri, Bright, Coleman, & Urban, 2007; Sorichetta et al., 2016;
Stevens, Gaughan, Linard, & Tatem, 2015). Gridded population datasets
have been used extensively in natural disaster operations (The National
Research Council, 2007), epidemiological modeling (Linard & Tatem,
2012; Pezzulo et al., 2016b), identifying populations at risk to climate
and land change (Füssel, 2007; Hahn, Riederer, & Foster, 2009; López-
Carr et al., 2014; Vargo, Habeeb, & Stone, 2013), and infectious disease
and hazards (Salje et al., 2016). A variety of different approaches for
creating gridded population data, coupled with increasingly detailed
ancillary information, underlies a direct need to better understand the
spatial and, when appropriate, statistical structure driving these models
and how that is affected at multiple spatial scales (Nieves et al., 2017).
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The methods that generate these gridded data range from straight-
forward areal weighting techniques (also known as proportional re-
allocation) to dasymetric (weighted) redistribution, and more statisti-
cally advanced models requiring ancillary information, often in the
form of remotely-sensed or other spatially-explicit data sources (Bright,
Rose, & Urban, 2016; Gaughan, Stevens, Linard, Jia, & Tatem, 2013;
Mennis, 2003; Mennis & Hultgren, 2006). In addition to the different
methods that produce gridded datasets, it's important to note the type
of population may be different as well. For instance, some products
might model residential population (i.e., night-time population)
(Doxsey-Whitfield et al., 2015) while others (Bhaduri et al., 2007) may
focus on ambient population (i.e., the average location of people across
time). A well-known dataset that uses areal weighting is the Gridded
Population of the World (GPWv4), producing gridded population data
at 30 arc-seconds spatial resolution (~1-kilometer resolution at the
equator) (CIESIN, 2016). The process of dasymetric mapping requires
disaggregating spatial data from coarser “source” units into finer
“target” units using ancillary data at a given target spatial resolution
(Mennis, 2003; Mennis & Hultgren, 2006). The variability in the an-
cillary data values (e.g., land cover) enables an asymmetric allocation
of population values from the source spatial resolution (Nieves et al.,
2017). For example, this happens when redistributing population in
such a way that urban areas will have a higher weight than forested
areas (Bhaduri, Bright, & Rose, 2014).

Out of many available methods of dasymetric mapping, the in-
telligent dasymetric mapping is one of the most widely used and most
flexible techniques (Mennis & Hultgren, 2006; Nagle, Buttenfield, Leyk,
& Spielman, 2014). This technique downscales from source populations
Ps to target populations Pt as follows:

=
∑ ∈

P P w
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t
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where the numerator wt is the expected population count in target area t
and denominator is the sum of all expected counts wt in that source
area. The expected population, w could be written as a function of
different covariates:

= … +w f c c c error( , , , )n1 2 (2)

where ci represents the individual covariate such as lights-at-night,
slope, elevation, and proximity to land-use types. In a statistical model,
the expected population density wt might be derived through a re-
gression type approach (Mennis, 2009) or ensemble predictor (e.g.
Random Forest) using population data combined with ancillary data
layers (Stevens et al., 2015). For example, the WorldPop Project (www.
worldpop.org) uses a random forest (RF) statistical model (Breiman,
2001) to generate a predictive weighting layer based on a suite of an-
cillary data that that is then anchored through dasymetrically dis-
aggregating census counts into a three arc second resolution (~100m at
the equator) gridded product (Stevens et al., 2015). This combined
statistical and dasymetric approach has been shown to be more accu-
rate with final gridded population datasets (Gaughan et al., 2016;
Sorichetta et al., 2015; Stevens et al., 2015). However, validation at the
grid (i.e. target) scale is difficult as the model is paramaterized with an
aggregated set of counts (i.e. source) at the administrative unit level.

Due to a change in the model scale, the range of population density
of the target data differs from the source. The difference in population
density of urban vs. rural areas may impose bimodality at the finer scale
distribution that may be absent at the source scale distribution. This
mismatch would be wider with the increase in the size of the source
administrative unit. Based on the method of modeling, the prediction
based on source training samples may lead to underestimation of dis-
persion and extremes in the distribution at target scale.

In this context, we examined the effect of mismatch related to range,
variability, and spatial structure of spatially downscaling population
counts from source administrative units to target grid cells. We use
spatial autocorrelation statistics as a measure of the spatial structure. At

administrative unit (i.e., source) scale, we analyze the quality of pre-
diction on a holdout dataset and explore the performance of the RF
statistical model with a spatially autocorrelated dataset. At the grid
scale (i.e., target) we analyze the variation in prediction using the
source scale model and covariates at the target scale. The mismatch is
generated by varying the level of spatial autocorrelation of samples
drawn from census data. Two other sampling methods, simple random
sampling (SRS) and geographically stratified random sampling (GSRS),
provide a benchmark to assess sampling performance. Using the RF
model, we tested the variation of predictions, errors, and spatial pat-
terns of residuals. Lastly, we examined levels of bias introduced in an
aggregated prediction at the source unit level by an RF-informed da-
symetric weighting technique across the samples.

2. Methods and data

The method and datasets are described in four parts. The first part
introduces the study area and the ancillary datasets. In the second and
third part, we provide an overview of the modeling framework used by
WorldPop and the specific sampling approaches driving questions of
interest. In the fourth part, we summarize the steps involved in the
simulation experiment.

2.1. Study area and covariates

Because of the availability of fine spatial resolution census data, we
selected Nepal as our study area. The population data were obtained
from the Census Bureau of Nepal. Administratively Nepal is divided into
36,042 wards, 3647 local authority units, and 75 districts that are di-
vided into five states. Based on natural conditions it can be divided into
three belts: Terai (down belt), Hill (middle belt), and the Mountain
Regions. These different belts also represent, respectively, the de-
creasing order of population density, as shown in Fig. 2A.

The enumerated residential population of Nepal as per 2011 census
is 26,242,867. Based on administrative level 5 census data, the popu-
lation density varies from 0 people per hectare to 1476 people per
hectare, with mean and median density 9.04 and 2.78 people per
hectare, respectively, indicating high skewness in the distribution.

The covariate datasets were prepared using ArcGIS (ESRI, 2016)
and the Python programming language (version 2.7) (Python Software
Foundation, 2013). The land cover is based on GlobCover data, which is
derived from the ENVISAT satellite mission's MERIS (Medium Resolu-
tion Image Spectrometer) imagery. Land cover data were com-
plemented by digital elevation data and derived slope estimates from
SRTM-based HydroSheds data (Lehner, Verdin, & Jarvis, 2013). The
Global Urban Footprint (GUF) 2016 data at 12m resolution was col-
lected from the DLR Earth Observation Center, and the Global Human
Settlement Layer (Pesaresi et al., 2013) with a spatial resolution of 38m
was collected from the European Commission Joint Research Centre
(2014 beta version). Observed lights at night as Visible Infrared Ima-
ging Radiometer Suite (VIIRS) data (Hillger et al., 2013), within-
country climatic spatial variations through the use of WorldClim/Bio-
Clim 1950–2000 mean annual precipitation (BIO12) and mean annual
temperature (BIO1) estimates were also acquired (Hijmans, Cameron,
Parra, Jones, & Jarvis, 2005). In addition to land cover, settlement, and
associated raster datasets, we included geospatial data that was corre-
lated with human population presence on the landscape, such as net-
works of roads and waterways; large water bodies; settlement or po-
pulated locations; protected area delineations; and health facility
locations (DSD Nepal, D. S. D. of N, 2015). All datasets were resampled
using nearest neighbor to match same resolution to a square pixel re-
solution of 8.33×10–4 degrees (approximately 100m at the equator)
and projected into UTM 44.5 projection prior to analysis. Covariate
data employed in the modeling process are summarized in Table 1.
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2.2. Modeling framework

Fig. 1 provides a schematic diagram of the workflow used by
WorldPop, based on the model used by Stevens et al. (2015). There are
three submodel components: (1) Covariate preparation, (2) modeling
and prediction of population density at the census unit level, which
provides the weighting factor for redistribution in each census unit and
(3) validation assessment. We used an RF (Breiman, 2001) to generate
the predicted population density layer that informed our dasymetric
redistribution of population counts (Stevens et al., 2015). RFs are a non-
parametric ensemble modeling technique that uses bagging and a
random selection of covariates across numerous classification and re-
gression trees (Breiman, 1996) to reconstruct nonlinear relationships
and interactions of the covariates (Breiman, 2001). When all trees are
combined, the RF is robust to small and large sample sizes and “noisy”
datasets (Breiman, 2001). Given that each tree is modeled in-
dependently, and is therefore parallelizable, modeling is efficient and
there are minimal parameters to be set allowing for automation of the
process (Liaw & Wiener, 2002). Bagging each new tree is fitted with a
bootstrap sample of the training observations. The out-of-bag (OOB)
error is the average error calculated using predictions from the trees
and the remaining sample. This allows error to be computed for each
tree while training the model.

A variance-stabilizing monotonic transformation is used to reduce
the skewness and spatial heterogeneity of data. Stevens et al. (2015)
found that by transforming the response variable using natural log prior
to RF model fitting, consistently achieved higher prediction accuracies
in the validation of aggregated predictions. Consequently, all the source
datasets with zero counts were removed from the modeling process. A
monotonic transformation of response variable does not alter the
splitting rules for covariates. However, it can have a significant impact
on model fitting and performance as it affects the values calculated for
the splitting criteria objective function (sum of squared deviations for
predictions in the RF regression case).

Using the model trained on the source scale, and predicting to the
target scale using gridded covariates, a population density surface is

predicted. The RF predicted population densities are used as relative
weights to employ a dasymetric scheme (Mennis, 2003) to redistribute
population counts within each source unit to the target cells (Stevens
et al., 2015). The model used in this study differs from the model em-
ployed by WorldPop in dasymetric mapping part. While WorldPop
model dasymetrically redistributes the population using the finest
census level boundary (adm. 5), we dasymetrically redistribute the
population using the next coarser census level boundary (adm. 4) and
use the finest census level counts for validation. The weighted surface is
summed up adm. level 4 (i.e., adm. 4) counts before dasymetrically
redistributing the census counts into the ~100m grid cells.

2.3. Approach to generate and test spatial variation in sampling

Our motivation behind examining sample design was to better un-
derstand the possible mismatch that might existbetween training and
prediction data under a change of scale. When the actual distribution of
the response variable is unknown, the sampled data may vary from the
actual distribution. In the case of aggregrated data, the mean is known
but the variance of distribution will always vary across the scale. In
such cases, there is a wider range of sampling within the known range
and mean that could represent the possible scenarios. Applied to po-
pulation data, the difference that exists between population density of
urban and rural area means, it could follow bimodal distribution.
Testing the spatial variation in sampling will also provide some insight
on the behaviour of Random Forest model.

To design, such sample, the local spatial autocorrelation properties
have been exploited. To determine the spatial relationship of each ob-
servation with its neighbor, the Moran's I of samples was calculated
using a row-standardized weight matrix using three nearest neighbors.
A Moran's plot represents the spatial relationship of each observation
with its neighbor. Fig. 2C shows the Moran's plot of the transformed
population density. Before the transformation, the global Moran's I was
0.41. Following log transformation, the global Moran's I increased to
0.65. In addition, the properties of a local indicator of spatial associa-
tion (LISA (Anselin, 1995)) statistic, and corresponding standardized z-

Table 1
Data sources and variable names employed for population density estimation used for dasymetric weights.

Variable name(s)a Description Source and nominal resolution

Census Nepal Census Data, 2011 Central Bureau of Statistics of Nepal, Admin-level 5
Land cover GlobCover, 300m (Arino et al., 2012)
cls011, dte011 Cultivated terrestrial lands
cls040, dte040 Woody/Trees
cls130, dte130 Shrubs
cls140, dte140 Herbaceous
cls160, dte160 Aquatic vegetation
cls190, dte190 Urban area
cls200, dte200 Bare areas
cls210, dte210 Water bodies
clsBLT, dteBLT Built
guf Global Urban Footprint DLR Earth Observation Center, 12m
ghs Global Human Settlement Layer ECJRC, 38m (Pesaresi et al., 2013)
lig Lights at night Suomi VIIRS-Derived (Hillger et al., 2013)
tem Mean temperature, 1950–2000 WorldClim/BioClim (BIO1) (Hijmans et al., 2005)
Pre Mean precipitation, 1950–2000 WorldClim/BioClim (BIO12)(Hijmans et al., 2005)
Pro sanctuaries, national parks, game reserves, World Heritage Sites World Database on Protected Areas September 2012, UNEP (UNEP-WCMC, 2010)
ele Elevation USGS HydroSHEDS (Lehner et al., 2013)
ele_slope Derived Slope USGS HydroSHEDS (Lehner et al., 2013)
hea_dist, hea_cls Health Infrastructure of Nepal Data Survey Department of Nepal
bui_dst, bui_cls Building footprints Open Street Map, 2017–07
res Distance to residential areas Open Street Map, 2017–07
pla_dst Distance to places Open Street Map, 2017–07
roa Distance to road networks Open Street Map, 2017–07
wat Distance to waterbodies Open Street Map, 2017–07

a The variable names are used in Random Forest model output and throughout the text as referenced to the specific data that they were derived from. The first
three letters are derived from the data type (e.g. “lan” indicates land cover), and the last three letters, if present, indicate what type of data each variable represents
(e.g. “_cls” is a binary classification, “_dst” is a calculated Euclidean distance-to, and “_dte” is Euclidean distance-to-outer-edge variable where positive distances are
outsides and negative distances are inside areas).
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scores and p-values provided increased nuance into the local level of
variation in autocorrelation and heterogeneity of the different sample
datasets.

Higher deviations in LISA statistics indicate the presence of spatial
heterogeneity. Similar to Getis-Ord Gi* statistics based hot-spots and
cold-spots (Getis & Ord, 1992), the clustering of high values and low
values indicate pockets of non-stationarity with the origins present at
the locations with the highest significance value. Shown in Fig. 2B,
most of the clustering of low densities in the northern areas represent
the harsh living conditions in the mountain areas, whereas the clus-
tering of high densities in the capital region and southern plains re-
presents the better living conditions and urban agglomeration. This is
also reflected in Fig. 2C where points in quadrants I and III represent
the clustering of high values with high-value neighbors and low values
with low-value neighbors, whereas the points in II and IV represent the
clustering of low values with high-value neighbors, and high values
with low values neighbors. The significant wards in quadrant ‘I' of
Moran's Plot show high-high concentrations, where tiny units have very
high population densities. These are areas either located in Kathmandu
valley or relatively large cities, such as Pokhara, and represent the
urban agglomeration. Less habitable areas in quadrant ‘III,’ having
higher slopes and elevations, contain clusters of low populated areas,
which are located in the northern and central parts of Nepal. The sig-
nificant high-low wards represent areas in the north, with relatively
lower population densities. These settlement units are located at high

altitudes and are surrounded by valleys or peaks with inhabitable
slopes, which require special attention. The significant low-high wards
exist primarily in the south and have relatively higher population
densities.

With that understanding, we designed the sampling to represent
various levels of autocorrelation. The effective sample size calculation
under an autoregressive specification for normally-distributed data
(Griffith, 2005) suggested that given a Moran's I of 0.65 and a sample of
35,989 observations, about 14% of iid samples will have the same in-
formation. However, with a change in model specification, this value
may differ to some extent. As the RF regression is non-parametric, this
value could not be applied. Accordingly, we doubled the sample size to
account for this, resulting in a fixed sample of 28% of all values, cor-
responding to 10,080 ± 10 units. The term holdout refers to unsampled
units that were retained for validation.

The 28% sample set from the Moran's I calculation was generated
using LISA statistics. We divided the census-based units into two mu-
tually exclusive groups: significant and insignificant as determined by
the LISA statistic at 0.1 level significance. A total of 11,127 (30.08%)
were in the LISA significant group, and 24,862 units (69.92%) were in
the insignificant group. We then adopted a stratified random sampling
scheme, fixing the percentages of significant and insignificant units in
the total sample to generate samples with a varying level of auto-
correlation, as detailed in Table 2. For each level of autocorrelation, the
sampling procedure was repeated 100 times, calculating and recording

Fig. 1. Schematic diagram of the modeling process used by WorldPop. The covariates are prepared at the source and target scale. The source scale covariates are used
for training whereas the target scale covariates are used for prediction of weighting layers for each grid. Using the dasymetric weighting function the final gridded
population dataset is modeled.
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Fig. 2. (A) Average population per hectare in 36,042 administrative units of Nepal represented in six quantiles (B) statistically significant high-high, low-low, low-
high, and high-low regions. Regions with no population, such as national parks, high peaks are excluded (C) Moran's plot of transformed population density. The
extreme values existing in the non-transformed data became more homogeneous following log transformation. The x-axis represents the standardized response
variable, and the y-axis represents the average of the standardized neighboring values.

Table 2
Moran's I of the base dataset and average Moran's I across samples. % significant LISA units column represents the percentage of LISA significant units in the sample.

Model % Sig. LISA units Moran's I Model % Sig. LISA units Moran's I Model % Sig. LISA units Moran's I

Base – 0.65 Sample 5 25 0.61 Sample 12 60 0.79
SRSa – 0.65 Sample 6 30 0.65 Sample 13 65 0.81
GSRSb – 0.70 Sample 7 35 0.68 Sample 14 70 0.82
Sample 1 5 0.37 Sample 8 40 0.71 Sample 15 75 0.83
Sample 2 10 0.45 Sample 9 45 0.73 Sample 16 80 0.85
Sample 3 15 0.51 Sample 10 50 0.75 Sample 17 85 0.86
Sample 4 20 0.57 Sample 11 55 0.77 Sample 18 90 0.87

a Simple random sampling.
b Geographically stratified random sampling.
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Moran's I for each repetition, and calculating the corresponding average
Moran's I, across all repetitions, for each level (Table 2). The average
Moran's I across the 100 samples of each variation is shown in Table 2.

2.4. Simulation and validation

A general overview of simulation framework is shown in Fig. 4. The
steps involved in generating the samples and random forest prediction
and validation is summarized in the flow diagram. As portrays in the
process chart of a simulation experiment, the dataset is divided into two
groups based on LISA p-value, and 10,080 samples were drawn from
each of these two groups by varying the ratio from 5% to 90%. For SRS,
10,080 samples are randomly selected. The GSRS is based on 10,080
equal size hexagons, and one administrative region is randomly se-
lected inside each hexagon. For LISA based samples, the administrative
units not selected in the sampling process constitutes a holdout dataset
that is used for validation. The RF model is trained based on a given
sample dataset using the census level covariates. The corresponding
holdout dataset for each LISA sample is used to validate the trained
model.

Using the sample-based RF model and grid level covariates, we
predict the population density at the grid scale. Lacking a finer-scale
dataset to validate grid scale predictions we compared these predictions
to the base model (trained on all census-based units). The predicted
grid-based population density data is used as a weighting layer for
dasymetric redistribution. The predicted data is scaled to match the
population counts at the level 4 data, i.e., the next coarser census-based
population count. Summing the grid-based population counts within
each of the finer-scale census-based units level 5, we then compared the
aggregated counts to the original census counts to approximately as-
certain the RF's capture of fine-scale population distributions. For
comparision, we used Root mean square deviation (RMSD), %RMSD,
mean absolute deviation (MAD) and the r-square (RSQ). The RMSD is
the square root of the mean squared deviation between observed and
predicted. The %RMSD is the square root of the mean squared deviation
of residuals between observed and predicted divided by the observed
value. The MAD is the mean of the absolute deviation of residuals be-
tween the predicted and observed values. The r-square is a measure of
goodness of fit that indicates the linear association between the pre-
dicted and observed values.

3. Results

The results are based on 2000 samples representing 100 replications
of 18 sample types with varying levels of Moran's I alongside 100
samples each from the simple random samples, and geographically
stratified random samples. We discuss the properties of these different
sampling approaches, the variations in the model training, and the
prediction results. Important to note is that the Moran's I of the source
data (i.e., administrative unit, n=10,080), 0.65, is considered to be the
base level of autocorrelation. As such, Moran's I higher than 0.65 in-
dicates high autocorrelation and lower than 0.65 indicates low auto-
correlation. To visualize the effect of sample types with higher and
lower levels of Moran's I on RF predictions in detail, out of eighteen we
selected three samples that represented lower (sample 2), similar
(sample 6), and higher-level (sample 16) Moran's I compared to the
base dataset Moran's I. For consistency across the results we have used
the log-transformed values of the population densities.

The simple random sample was generated by randomly selecting the
samples, while the geographically stratified sample was based on bin-
ning the area using hexagons, in which one unit was selected from each
hexagon. The average Moran's I value of simple random sample (0.65)
was like the base level but the average Moran's I for the geographically
stratified sample was 0.68. For the additional eighteen sample types,
there is a varying composition of significant and non-significant LISA
units that controlled the autocorrelation captured by Moran's I.

Sample 6 (n=10,080) and base dataset (n=35,989) both have
30% significant LISA units (Table 2), and sample 6 has a composition
similar to samples that were obtained using simple random sampling.
The average Moran's I of sample 6 and SRS were same as the Moran's I
of base dataset. With a decrease in units with significant LISA, the
average global Moran's I decreased, and the peak of the distribution was
pushed upwards with a lighter tail. On the other hand, an increase in
units from the group with significant LISA, the average global Moran's I
increased, and the peak of the distribution was pushed downwards with
a heavier tail. Interestingly, when 90% of the sample was composed of
significant units, the distribution became bimodal, creating a valley
centered on the mean. The two modes of this distribution represented
the mean of “high-high,” and the “low-low” clustered LISA values
(Fig. 2B). The distribution of samples across different levels of auto-
correlation is depicted in Fig. 3.

The variation of the sample means and its variance with variation in
the level of the autocorrelation of samples is shown in Fig. 5A and B.

Fig. 3. Density plot of log-transformed distributions for the base dataset, simple random sample(SRS), geographically stratified random sample (GSRS), and eighteen
samples at different Moran's I.
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The grey dots, red dots, and blue dots represent eighteen hundred LISA-
based samples, one hundred each of simple random samples, and geo-
graphically stratified random samples respectively. Change of global
Moran's I in samples affected the variance more than the mean. Samples
with higher Moran's I had higher variance than lower Moran's I sam-
ples. This observation was consistent with the effect of autocorrelation
on sample variance (Griffith, 1992, 2005). The LISA based samples and
random samples both had a similar sample mean-variance with mean
1.062. However, the geographically stratified random sampling was
highly biased, with mean 0.36.

The variance explained by the models based upon the OOB1 samples

showed a curvilinear increase (Fig. 5D) with an increase in Moran's I;
however, the mean square error (MSE) begins to decrease when the
non-significant component in the sample was 20% or less (Fig. 5C).
While validating using holdout units the RMSD values showed an op-
posite pattern to the OOB units, but for higher ranges of Moran's I, R-
square between holdout and predictions decreased rapidly. The Moran's
I of residuals indicate a spatially structured relationship across the

Fig. 4. Process chart of the simulation experiment.

1 The OOB error estimates are generated internally by the RF model. Each tree
in randomForest (Liaw & Wiener, 2015) R packages is constructed on 63%
bootstrap training data, leaving 37% training data for validation.
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study area. The residuals of the training model and validation with
holdout units, in all cases (Fig. 5G and H), exhibited positive auto-
correlation. The residuals of holdout units showed a decreased auto-
correlation with a minimum Moran's I of approximately 0.7. However,
this value was always higher than the training residuals. The RMSD
values of holdout units across all the values of Moran's I had a ‘V’ shape.
This metric was lowest near the 0.7 Moran's I level, which was slightly
higher than the base level.

While validating using holdout units, the R-square and RMSD values
for lower ranges of the sample Moran's I showed a similar pattern to the
OOB units, but for higher ranges of Moran's I, the predictions showed
lower errors. R-square was also robust for higher ranges of Moran's I.
This was contrary to the observations with the holdout data and in-
dicated that RF was producing better predictions with higher auto-
correlation in the training data (larger Moran's I). Models estimated
with samples having lower Moran's I had a smaller range for pre-
dictionand those with higher Moran's I had a more extensive range. We
compared the population datasets produced by dasymetrically

redistributing administrative level 4 census counts with the counts of
the finer, administrative unit level 5 data. (Fig. 5I). The dasymetric
process was sensitive to the spatial heterogeneity of population counts
that was present at the administrative unit level (Fig. 5J).

3.1. Detailed investigation of training and prediction

The three selected samples from each LISA based sampling: sample
2, sample 6, and sample 16 are referred as MI-.45, MI-.65, MI-.85, re-
presenting lower, similar, and a higher level of Moran's I than the base
level. In Fig. 6 these three samples are shown in red, while the corre-
sponding holdout is shown in grey. As the autocorrelation was in-
creased, the concentration of samples began to move from the center of
the distribution towards the tails. With the highest level of auto-
correlation, again, displaying a bimodal distribution (Fig. 3). The
holdout units showed different patterns. As the peak of the sampling
distribution began to decrease with higher autocorrelation, the peak of
holdout units began to increase, showing that the units had a low

Fig. 5. All samples are plotted in each panel re-
presenting the geographically stratified samples
(blue) LISA based samples (grey) and simple random
samples (red). The X-axis represents sample Moran's
I and Y-axis represents: (A) mean of sampled units
for training at census level, (B) sample variance of
sampled units for training at census level, (C)
training Model MSE based on OOB, (D) training
model R-square based on OOB, (E) RMSD of holdout
(F) R-square of holdout (G) spatial autocorrelation in
the residuals of training samples, (H) spatial auto-
correlation in the residuals of holdout, (I) Root mean
square deviation of predictions from a full set of
census data, (J) Validation of transformed popula-
tion density following dasymetric weighting at
census scale with actual population density. (For
interpretation of the references to colour in this
figure legend, the reader is referred to the web ver-
sion of this article.)
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deviation from the mean.

3.1.1. RF model
The effect of the RF model was captured by the plots shown in

Fig. 6A, B, and C. Fig. 6A shows the observed and predicted values of
the sampling units and holdout units under low autocorrelation. The
predicted values for high and low values deviated in higher magnitude
from the fitted line. Fig. 6B showed the case with a similar level of
autocorrelation as the base dataset and had a lower bias. Fig. 6C shows
relatively higher autocorrelation samples, where the middle values
showed values nearby the mean, having an ‘S'-like shape. The slope of

the fitted line increased with higher autocorrelation, which showed the
better goodness of fit, and the difference between the slope of holdout
units and sample units became smaller with an increase in the sample
autocorrelation. Across these four models, the mean of squared re-
siduals is the lowest for the base model (Table 3), but R square is
highest for the sample with Moran's I 0.85.

A negative residual represents an over prediction, whereas a posi-
tive residual represents underprediction. Ideally, the residuals should
have a random pattern but, these revealed a linear relationship between
the observed values (Fig. 6D, E, F) indicating residuals are not white
noise and still contain information. As the units not selected as part of a

Fig. 6. A, B, and C show predictions by samples with various levels of autocorrelation. D, E, and F show residuals by samples with various levels of autocorrelation.
For Morans I 0.45sample, a significant part of the sample consisted of values that surrounded the mean, whereas the maximum part of holdout have extreme values.
For Moran's I 0.65 both training sample and holdout have similar distribution of extreme values. The Moran's I 0.85 sample has opposite distribution to MI0.45. The
output of model A trained on the lower autocorrelation sample tended to predict within a narrow range around the mean and the holdout residuals has high range.
The output of B and residual have similar variability. The output of C have higher variability and residuals have a less variability. The model trained on this type of
sample overpredicted the values that were higher than the mean and underpredicted the values that were lower than the mean.
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sample are used for holdout units these necessarily share an inverse
relationship in their Moran's I. If the Moran's I of the sample is lower the
holdout Moran's I is higher and vice-versa except for samples with
Moran's I matched to the base dataset. The slope of residuals of sample
units decreased with higher sample autocorrelation while the slope of
residuals of holdout dataset increased. A mismatch in training dataset
Moran's I resulted in a difference in the unexplained part of the re-
siduals.

Higher RF variable importance scores for any covariate indicates a
decline in mean squared error (MSE) of prediction using the observed
covariate values compared with predictions when that covariate's va-
lues are randomly shuffled. It is important to note that a variable im-
portance score may change with each independent simulation if colli-
nearity exists among the predictors. The overall percent explained MSE
of an RF model reduces with the decrease in samples size. While dis-
tance from residential areas is the top variable in the base model, it is
the top variable for samples with low and similar Moran's I but third
important variable for higher autocorrelation sample. Distance from
roads is the top predictor for higher autocorrelation samples while it is
the second most important predictor for base sample and MI-.65 sam-
ples. Distance from the edge of GUF built-area is also a top predictor
except for the MI-.45 samples. Elevation and slope are among the top
five important predictors for base dataset but not for samples.

3.1.2. Grid-scale prediction
Here, we used the base model as a benchmark to compare the

sampling performance of the three selected samples. Fig. 7 shows the

predictions based on MI-.45, MI-.65, MI-.85 models as described in
Fig. 8 compared with predictions using all the census units.

As the sample autocorrelation is increased, the regression line of
model prediction gets aligned with the prediction of the base model in
Fig. 7. Also, we find that more values are above the regression line,
meaning the values are being overpredicted compared to the prediction
using the base model. Higher autocorrelation in the sample data in-
creases the extreme values in the sample. At autocorrelation level 0.85,
the bimodal distribution of sample has higher variance. Random forest
predictions have a higher range at this level. The predictions from
higher autocorrelation samples have better predictions than two other
lower autocorrelation samples. The range of predictions of these three
samples varies up to 4.1, 5.5, and 6.1 in log scale for Moran's I 0.45,
0.65, and 0.85. The higher range of prediction at pixel scale ensures
better dasymetric redistribution of population and better estimates the
extremes of the distribution of the observed, base dataset.

The validation assessment based a population map informed by
coarser census-level data (adm 4) compared back to finer census scale
counts (adm.5) is shown in Table 4. In terms of higher accuracy, the
model with higher Moran's I lags behind the base model. As noted by

Fig. 7. Comparison of predictions from three selected samples and predictions from the base dataset (trained using all the census units). The top panel indicates the
Moran's I value of training data. For Moran's I 0.45 the predicted values at pixel scale are under predicted for high and low values. For 0.65, the predicted values are
still under predicted for some of the extremely high and low values. For 0.85, overall prediction is spread across the range. Relative goodness of fit for 0.85 is
therefore the best relative to the model fit with the complete, base dataset.

Fig. 8. Comparison of semivariance of samples and
predicted data calculated at 10 km binned intervals.
The MI here indicates Moran's I and the two digits
used indicates the value of Moran's I of the samples
for e.g. MI-45 indicates sample with Moran's I value
0.45. The sill of the sample increases with the in-
crease in the autocorrelation. The MI-.65 has similar
sill and range compared to the base data. The
gridded predictions from the base model have the
highest sill.

Table 3
Validation of RF model at source scale.

Population counts Base MI-0.85 MI-0.65 MI-0.45

Mean of squared residuals 0.37 0.35 0.41 0.44
Percent variance explained 80.75 62.68 78.21 89.57
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Stevens et al. (2015), the Random Forest model based dasymetric ap-
proach tends to predict very small values in the rural and less dense
areas. Using a fractional continuous surface population counts for rural
areas leads to underprediction of population density and higher amount
of errors.

Compared to the simple random samples, the predictions from
geographically stratified sample had higher RMSE and lower R-Square
value both at the source scale and target scale. However, the RMSD
values of simple random samples are comparatively scattered. The
geographically stratified sample have higher autocorrelation than
simple random samples, but due to the underrepresentation of extreme
values, the heterogeneity is reduced. The trained model on this sample
underpredicts the high population densities areas both at the source
and target scales. Due to the stratification, each replication of geo-
graphically stratified samples is evenly distributed across the country
and captures a similar level of variability while the variability of simple
random sample varied with each replication. This variability of the
simple random sample is captured by the scattering of the RMSD.

4. Discussion

In this study, we analyzed the error propagation caused due to the
mismatch from the source scale to the target scale using an RF-based
dasymetric model to produce a gridded population dataset. The eigh-
teen different types of samples with varying levels of spatial auto-
correlation represented the possible mismatches in source and target
scales. These were referenced against typical sampling techniques of
simple random sampling and geographically stratified sampling. The
findings of this experiment can be summarized into the findings at the
census unit scale (using holdout units) and findings at grid scale.

4.1. Impact on RF training and prediction at source scale

At the source scale, the samples with lower Moran's I had a higher
proportion of non-significant LISA units. All non-significant units are
small towns or villages with varying population density levels. As
shown in Fig. 7A, the model trained on this data tends to deliver poor
predictions, for the observed, high-density and very low-density areas
that are tightly clustered about the mean. Samples that have a higher
Moran's I than the original census data, and a higher proportion of
significant LISA units, tended to originate from areas containing large
cities (Fig. 2C, quadrant I and III) with high population density or from
areas of very low population density settlements in the mountains or
isolated in plains. Further, models trained on this data tend to over
predict or under predict the values in the middle range. With higher
autocorrelation, the OOB samples resulted in the higher goodness of fit.
However, the MSE value started falling at extremely high Moran's I
values which is likely due to the reduction in the number of units with
high population density in the sample and MSE being sensitive to
outlier errors. The non-random pattern of training model residuals had
a linear relationship with the observations, and the spatial pattern of
residuals became more evident with higher levels of sample Moran's I.
The residuals of the RF model, trained on a full set of observations also
had spatially autocorrelated residuals, which is not surprising since RFs,
given their ensemble nature, cannot predict outside the observed range
of the response variable (i.e., they always regress towards the mean to
some degree (Breiman, 2001)). If high population density units in the
original census data are clustered in space, then under prediction in

those clustered areas (over-prediction in less densely populated units)
will result in significant residual spatial autocorrelation. The varying
coarseness of census units added uncertainty and increased errors in the
RF model predictions. Also, the higher the autocorrelation, the more
similar the fit produced from each bootstrap sample and result in a high
variance of Random Forest model.

The simple random samples have mean, variance and Moran's I si-
milar to the base level dataset. Hence it captured the exact level of
heterogeneity and autocorrelation. The geographically stratified
random sample that was based on regular hexagons, however, captured
more variation in population density across census units since it tends
to oversample the larger, sparsely densely populated units relative the
higher number of smaller, high-density units present in the original
data. Hence the bias of the geographically stratified sample reflected
the uneven spatial distribution of the population. At the target scale, the
prediction from the simple random sample had higher RMSE compared
to the geographically stratified sample. This phenomenon could be
understood by observing the difference in the mean and range of
training and prediction data. The mean of geographic random sample
training data was much less than the simple random sample mean,
hence the RMSE is concentrated showing the similarity of predictions.

4.2. Impact on RF prediction at target scale

This study also fits into the larger class of work on change of support
problems. In geostatistics, the change of support problem addresses a
large set of problems where the observations and estimation are done at
different scales. Detecting the varying nature of a particular phenom-
enon depending on the geographic scale of analysis is well documented
as far back as the early 1950s. Robinson (1950) pointed out that due to
strong spatial effect, inference about individuals based on group-level
data could be contradictory which is also known as an ecological fal-
lacy. Under a change of support, the variance at source scale represents
the variances of mean at the target scale. In geostatistics, this phe-
nomenon is explained by the regularization theory (Journel &
Huijbregts, 2003) that explains the change in the variogram of a spatial
attribute as support changes. The general result is that the sill of the
variogram decreases as one moves from finer to coarser support and
that this effect is stronger when the nugget variance is significant. A
drop of the sill means that the spatial variability decreases, and this
agrees with the observation that coefficients of variability often de-
crease with higher levels of spatial aggregation (Atkinson & Tate, 2000;
Dumanski, Pettapiece, & McGregor, 1998). In a spatial interpolation
context, the averaging-out effect causes the coarser scale kriging var-
iance to be smaller than the finer scale kriging variance.

Fig. 8 portrays the empirical semivariance of source scale and cor-
responding target scale prediction using the base dataset and samples
with higher, similar, and lower autocorrelation. Among three samples,
MI-.85 have a higher sill. As we find in Fig. 8, although the MI-.65 has
similar sill and range, the prediction from MI-.85 is closer to the pre-
dictions from the base model. In a top-down population modeling, with
higher autocorrelation in the training samples, the variance of samples
at the source scale is much higher and possibly closer to the variance at
the target scale. For target scale prediction, using a sample with lower
Moran's I, high-density areas were under-predicted to the mean and
low-density areas were overpredicted (Fig. 7A). Predictions from
training data with a base level of Moran's I also have similar distribu-
tion (Fig. 7B). On the contrary, training data with higher Moran's I, the
predictions had relatively balanced distribution as shown in Fig. 7C.
This balance is due to the presence of both high and low values that
resulted in higher variance. After the dasymetric weighting process,
these predictions were aggregated and compared to the actual census
counts. In the comparison (Fig. 7C) we find more accuracy for the
higher ranges of autocorrelation but not for, the lower. However, the
current method of validating the accuracy of the predicted output maps,
based on aggregated counts, leaves a wider scope for errors in the

Table 4
Validation of predictions counts at target scale.

Population counts Base MI-0.85 MI-0.65 MI-0.45

“MAD” 285.08 298.24 291.33 294.73
“%RMSD” 85.14 89.41 88.84 94.47
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disaggregated predictions.
Spatial downscaling that relies on the use of ancillary variables is a

focus of research in many fields, but determining the accuracy of such
downscaling is often limited due to the absence of validation data
(Addiscott, 1998; Heuvelink, 1998). Few studies related to downscaling
in spatial ecology and environmental modeling have analyzed the effect
of scale across different nested spatial hierarchies (Addiscott, 1998;
Chave, 2013; Gustafson, 1998; Heuvelink, 1998). Gardner, Mime,
Turner, and Neill (1987), concluded that if the underlying distribution
is totally random, data at different scales could be used as a neutral
source for modeling, however, in the presence of a spatial structure in a
dataset, the results might differ across those scales (O'Neill, Gardner, &
Turner, 1992; Wu, Jelinski, Luck, & Tueller, 2000). Heuvelink (1998)
divided the uncertainty associated with a top-down modeling approach
into two components: input errors and modeling errors. The input error
is support dependent, meaning that the error of the source average will
be smaller than the error at any given target within the source.

The modeling error results from various assumptions, discretiza-
tions, and simplifications that are made to make the model manageable,
which is often difficult to quantify. Heuvelink (1998) suggested vali-
dation is a reliable method to assess the model error contribution, which
involves comparison of model predictions with independent measure-
ments resulting in the output errors. When input and model errors are
statistically independent, the variance of the model error could be es-
timated by subtracting the variance due to input errors from the var-
iance of output errors. However, the main problem is directly obtaining
the data against which to test the model and with the increase in the
hierarchical level, the uncertainty attached to the distribution increases
as well that makes model evaluation correspondingly more difficult and
less satisfactory (Addiscott, 1998; King, Fox, Daroussin, Le Bissonnais,
& Danneels, 1998). An alternative for model evaluation would be
evaluating the model against aggregated data at the scale of the source
and assuming that the evaluation holds good at target levels (Radcliffe,
Gupte, & Box Jr., 1998; Stevens et al., 2015). Results of Radcliffe et al.
(1998) suggest that this method could be reasonable, but the sum of
residual will be smaller than that of the target scale.

5. Conclusion

This study contributes to the literature on the application of en-
semble models under spatial autocorrelation and spatial downscaling
that deals with interpolating aggregated counts to a finer scale. The
errors in gridded data can be attributed to misspecification of spatial
scale, and ecological fallacy as the relationships from inter-variability of
source scale is used to model intra-variability inside each source at a
target scale. Modeling finer scale distribution with courser scale
training data means will lead to underprediction of extreme values (i.e.
regression towards the mean). Due to the change of support, the range
of population density of the aggregated training data and the zonal
mean of covariates lead to a smaller range of training. The predictions
could be misleading when predicting new observations with values that
were not seen in the training set. The established relationship and range
of variation might change with size and shape of areal units. Also, the
limitation of a tree-based model could compound this issue, as the
prediction from a tree-based model is limited to the range of the
training data. All the predictions using the target scale covariates that
have values outside the range of the training covariates are predicted
upto the range of training scale. By taking avarage of these values, the
range of target scale prediction from Random Forest model will always
smaller than the range of training scale observations. The captured
nonlinear relationship by the RF model will differ from a model trained
on samples of disaggregated target level datasets. A third limitation of
this study is related to the exclusion of the covariate errors such as
measurement and positional error and impact of upsampling of cov-
ariates to higher resolution, e.g., ESA land use dataset was down-
sampled from 300m resolution to 100m.

The problems motivating this study are not unique to gridded po-
pulation modeling or spatial downscaling but several disciplines that
use RF modeling for spatial datasets. Our results suggest that for sam-
ples of spatially-explicit data used for prediction from the RF model at
the same scale, the presence of spatial autocorrelation leads to high
variance of the residuals. The RF model is sensitive to the mismatch of
spatial autocorrelation of the training sample, and a representative
sample of the actual population is helpful to achieve the best fitting
models. In many real-world scenarios, when the spatial distribution of a
variable is unknown, precaution has to be made in selecting the samples
as the mismatch could potentially affect the training. Some research has
been done in the area of spatial data mining aimed to be used with
spatial data with high autocorrelation and heterogeneity such as spatial
decision trees, and spatial ensemble learning (Jiang, Li, Shekhar,
Rampi, & Knight, 2017; Jiang & Shekhar, 2017). These models use a
spatial measure deduced from the spatial weight matrix as a variable in
the modeling process; however, scalability remains an issue. Some
other methods such as spatial resampling and block bootstrapping have
been used to capture the spatial structure (Brenning, 2012; Goetz,
Brenning, Petschko, & Leopold, 2015).

RF predictions from higher autocorrelation samples were found to
be better distributed and spread out at target scale. However, the un-
availability of validation data forbids us to make a generalized state-
ment in this regards. This work can be extended in different ways. One
extension could be improvising the model based on upper and lower
bounds of variance and range information at the target level. A possible
solution could be formulated by collecting target scale validation da-
tasets and examining its correlation with auxiliary variables. Another
possible extension could be the use of recent large-scale detection of
building footprints information from satellite imagery (Tiecke et al.,
2017; Yuan, 2016). Finally, the allocation process of the population
could be improved by using discrete allocation techniques.

All computation in this article was produced using R statistical
computing environment (version 3.4.1) (R Core Team, 2017) with R
packages raster (Hijmans, 2016), sp. (Pebesma, Bivand, Rowlingson, &
Gomez-Rubio, 2013), data.table (Dowle et al., 2018), random Forest
(Liaw & Wiener, 2015), Rborist (Seligman, 2016), and ggplot2
(Wickham, 2016). Programs and data are available from the corre-
sponding author on request.
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