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Abstract
Tracking spatiotemporal changes inGHGemissions is key to successful implementation of theUnited
Nations FrameworkConvention onClimate Change (UNFCCC). Andwhile emission inventories
often provide a robust tool to track emission trends at the country level, subnational emission
estimates are often not reported or reports vary in robustness as the estimates are often dependent on
the spatialmodeling approach and ancillary data used to disaggregate the emission inventories.
Assessing the errors and uncertainties of the subnational emission estimates is fundamentally
challenging due to the lack of physicalmeasurements at the subnational level. To begin addressing the
current performance ofmodeled griddedCO2 emissions, this study compares two common proxies
used to disaggregate CO2 emission estimates.We use a known griddedCO2model based on satellite-
observed nighttime light (NTL) data (Open SourceData Inventory for Anthropogenic CO2,ODIAC)
and a gridded population dataset driven by a set of ancillary geospatial data.We examine the
association atmultiple spatial scales of these two datasets for three countries in Southeast Asia:
Vietnam,Cambodia and Laos and characterize the spatiotemporal similarities and differences for
2000, 2005, and 2010.We specifically highlight areas of potential uncertainty in theODIACmodel,
which relies on the single use ofNTLdata for disaggregation of the non-point emissions estimates.
Results show, over time, how aNTL-based emissions disaggregation tends to concentrate CO2

estimates in different ways than population-based estimates at the subnational level.We discuss
important considerations in the disconnect between the twomodeled datasets and argue that the
spatial differences between data products can be useful to identify areas affected by the errors and
uncertainties associatedwith theNTL-based downscaling in a regionwith uneven urbanization rates.

1. Introduction

Keeping track of spatiotemporal changes of the greenhouse gases (GHG) emissions is key to the successful
implementation of theUnitedNations FrameworkConvention onClimate Change (UNFCCC) asmonitoring
emissions directly informs international climate change policy initiatives (Raupach et al 2007, Figueres et al
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2018).While the Paris Climate Agreement recognized the importance of the climatemitigation actions at
subnational levels (e.g. cities, private sectors), the emission inventories reported by countries, in the current
inventory framework, do not fully allowus tomonitor those efforts. This is because the current emission
inventory framework is designed to quantify GHGemissions at the national scale with no current, globally
consistent requirement for state or city-level emission inventory reporting.

Spatially-explicit emission estimates have beenmainly developed for research application purposes, such as
atmosphericmodeling (e.g. (Andres et al 1996, Kurokawa et al 2013, Oda et al 2018, Janssens-Maenhout et al
2019). The spatial extent of emissions is often estimated and/or determined via spatial disaggregation of the
emissions estimatesmade at larger, aggregated scales (e.g. countries and regions) and this is done using
geospatial information. Thefirst global CO2mapwas developed byAnders et al (1996) at theCarbonDioxide
InformationAnalysis Center, (CDIAC) at theOakRidgeNational Laboratory (ORNL). Andres et al (1996) used
a global population densitymap from1984 (Fung et al 1991) to disaggregate national level emission estimates to
a 1°×1° grid cell. The approach comeswith an inherent assumption of a good correlation between population
and fossil fuel carbon dioxide (FFCO2) emissions at a large aggregated spatial scale (e.g. state level).More
recently, Anders et al (2016) updated their approach to include two additional gridded population products to
covermore recent time periods (Andres et al 2016). Those two products are theGridded Population of the
World v3 (Center for International Earth Science InformationNetwork (CIESIN) and (CIAT) 2005) and
LandScan (Dobson et al 2000).

Additionally, in response to the strong need for a high-resolutionCO2 emissionmap for high-resolution
atmosphericmodeling and satellite CO2 analyses, Oda andMaksyutov (2011) proposed an improved
1 km×1 kmgridded emissionmodel. Known as theOpen SourceData Inventory for Anthropogenic CO2

(ODIAC), their approach is based on a disaggregation of country level fuel based estimates, such asCDIAC
estimates, using the combination of point source information and satellite-observed nighttime lights (NTL).
NTL has been identified as a good indicator of human settlement and the intensity of human activities (e.g.
(Elvidge et al 1999). Other studies have noted limitations for usingNTLdata as a 1:1 proxy for human
population distribution, especially in low-lit, less developed regions of theworld (Sutton et al 2001,Huang et al
2014, Pandey et al 2017). However, Oda andMaksyutov (2011) separatelymap point source emissions that are
difficult to approximate by the spatial distribution ofNTL and found thatNTL is a useful remote sensing tool for
disaggregating the remaining CO2 emission estimates in timely, updatablemanner at a global scale. Because of
the high-resolution, updated emissions, ODIAChas been extensively used in atmospheric carbon budget studies
across different scales from global (Takagi et al 2011,Maksyutov et al 2013, Feng et al 2017, Crowell et al 2019) to
urban scales (Ganshin et al 2012,Oda et al 2012, Brioude et al 2013, Lauvaux et al 2016, Oda et al 2017,Wu et al
2018, Reuter et al 2019)

While emissions disaggregation using awide variety of geospatial information is becomingmore accessible,
errors and uncertainties associatedwith the resulting emissionfields remain fully unquantified. The evaluation
of actual errors and uncertainties associatedwith gridded emissions is challenging fundamentally due to the lack
of physicalmeasurements (Andres et al 2016,Oda et al 2018, 2019). The research community has been studying
the use of atmosphericmeasurements to objectively evaluate emission estimates from reported inventories (top-
down analysis, e.g. (Vogel et al 2007, Lauvaux et al 2016,Nassar et al 2017)). However, the ability of constraining
emissions highly depends on the atmospheric observation available and is limited to a small area (e.g. city) and
particular sources (e.g. power plant). Thus, a common approach has been comparing inventories and using the
differences as a proxy for errors and uncertainties in gridded emissions (e.g. (Gately andHutyra 2017,Hutchins
et al 2017, Oda et al 2018, 2019). Though such comparison does not provide any objectivemeasure regarding the
performance of the data used for emission downscaling, it allows for characterizing the differences that are
unique to respective inventories (Oda et al 2019).

In this study, we evaluate the use of remotely-sensed, nighttime lights as an emission proxy by comparing
non-point sourceODIAC emissions to population datawhich are the direct proxy for the intensity of human
activities (thus, CO2 emissions).We aremost interested in comparing griddedCO2 emissions and spatially
identifying the error and uncertainty of CO2 emissions disaggregation techniques as afirst step towards
improving underlying data sets that informnot only the atmosphericmodeling community but alsoCO2

emission estimates at subnational levels.WhileNTL serves as an excellent proxy for developed countries (e.g.
(Oda andMaksyutov 2011)), NTL is thought to performpoorly as a proxy for CO2 emission disaggregation in
low andmiddle income countries where the spatial pattern of emission distribution, as associatedwith
population, is not directly proportional toNTL data. Raupach et al (2010) demonstrated that by showing
correlations betweenNTL and population, with population acting as a proxy for CO2 emissions (Raupach et al
2010). Thus, we use theNTL-disaggregated, non-point source CO2 emissions from theODIACmodel to
comparewith a gridded population dataset driven by a set of ancillary geospatial data for 2000, 2005, and 2010.
The objective is to examine how spatiotemporal changes in griddedCO2 emission estimates based on residential
population distributions compare with the changes in griddedCO2 emission estimates informed only byNTL
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data in order to identify areas of uncertainty in theODIACmodel.We examine the difference and similarities of
these two datasets atmultiple spatial resolutions for three emerging countries in Southeast Asia: Vietnam,
Cambodia and Laos. This region represents an areawhere theNTL performance is poor and emission estimates
will increase over time (Schneider et al 2015, Fulton et al 2017, Pandey et al 2017).The three countries also
provide an ideal landscape of varying development patterns associatedwith different brightness intensities and
population densities for highlighting areas of uncertainty in theODIACdataset.

Population data (POP) are traditionally based on censuses that are linked to areal administrative units of
varying sizes, thus the subnational distributions aremore constrained thanCO2 data that is typically based on a
country level emission disaggregation (i.e. there are no constraints at subnational level). Some studies have
explored theways to combine the use ofNTL and POPdata to compensate for theweakness of relying only on
NTL for emission disaggregation (Ghosh et al 2010, Rayner et al 2010). However, the literature lacks an
evaluation of the combined use of these two highly-correlated datasets to characterize potential errors and
uncertainties associatedwith the use of the proxy data, such as emission representation errors.We expect that
the differences found can be largely explained by the impact of the additional covariates andmodeling in the
population data, whichwe consider as potential additions for better CO2 emissionsmapping.

2.Data andmethods

2.1. CO2 emission dataset
TheODIAC is a global high resolution (1×1 km) fossil fuel CO2 emission data product (Oda and
Maksyutov 2011, Oda et al 2018). TheODIAC is based on spatial disaggregation of CO2 emission estimatesmade
by theCarbonDioxide InformationAnalysis Center (CDIAC) at theOakRidgeNational Lab (ORNL) (Boden
et al 2016). CDIAC emissions are estimated by fuel type (solid, gas, and liquid fuels, bunker fuel, and gasflares)
plus cement production, rather than the emission sector that is often used for the national inventory
compilation (Marland andRotty 1984). TheODIAC spatial disaggregation is done in two steps. First, emissions
frompoint sources (mainly power plants) are estimated andmapped using the power plant emission estimates
and geolocation taken froma global power plant database. The rest of the emissions (country totalminus point
source emissions), whichwe refer to a non-point source emissions, are distributed using the spatial distribution
of satellite-observed nightlights (NTL) intensities (Oda andMaksyutov 2011,Oda et al 2018). Non-point source
emissions are disaggregated to a 1 km×1 km spatial resolution usingDefenseMeteorological Satellite Program
(DMSP) calibrated radianceNTLdata, withmitigated saturation effect, developed byNOAA’s Earth
ObservationGroup (Oda et al 2010). The calibrated radianceNTL data are amerged product of the regular
DMSPNTLproduct and benefits from reduced gain observations (Ziskin et al 2012). Oda et al (2010) show an
improved spatial emissions distribution from the original publication byOda andMaksyutov (2011) due to the
use of the calibrated radiance data.

Globally, this emission disaggregation is done for 65 individual countries and 5 aggregated geographical
region groups (Oda andMaksyutov 2011). Vietnam,Cambodia and Laos are a part of the Asia Pacific
geographical region group in theODIAC country and region categorization. Since the country emissions for
those three countries are once aggregated to the regional total before the emissions disaggregation, the country
total emissions do not exactlymatchwith the original CDIAC estimates. However, the geographic aggregation
for Vietnam,Cambodia and Laos is necessary for an emissionmodeling framework that aims at quick, timely
updates using the latest fuel statistical data from companies such as BP. Further details of theODIAC approach
andmethodology are described elsewhere (Oda andMaksyutov 2011,Oda et al 2018). In this study, we excluded
point source emissions and only use non-point (diffuse, area) source emissions (totalminus - point source
emissions) and specific to the study region of interest, focusing on the remotely-sensedNTL, nonpoint source
ODIAC emissions. The version ofODIACused in this study (ODIAC2017) covers 2000 to 2016 but we use data
for the years 2000, 2005 and 2010. The data product is available fromhttp://db.cger.nies.go.jp/dataset/
ODIAC/ (Oda andMaksyutov n.d.).

2.2. Population dataset
The gridded population data for this study is from theWorldPop Project (www.worldpop.org 2018). The
underlyingmethod is one of themore advanced techniques for gridding population distributionswhich relies
on a hybrid approach of using a statistical weighting layer for estimating population density constrained by a
dasymetric redistribution of the administrative unit population counts (Stevens et al 2015). Such an approach
compares favorably or outperforms other techniques for producing gridded populationmaps (Sorichetta et al
2015, Stevens et al 2015, Reed et al 2018)while recognizing results are dependent on the spatial fidelity and
accuracy of the ancillary data and census data used in themodel.
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The statistical component of theWorldPopmodel involves training a random forest (RF)model
(Breiman 2001) to create a population density layer that will be used to disaggregate the administrative unit-
based population counts to a regular grid offixed spatial resolution. The RF-model is a non-parametric, non-
linear statisticalmachine-learning approach that combines a set of decision trees into an ‘ensemble’ learner of
multiple trees for a stronger output prediction. The ensemble ofmodels is combinedwith random sampling of
both training observations (bagging) for individual trees and covariate selection during tree growth. The
individual trees and their prediction estimates can then be validated against withheld observations (out-of-bag
errors, OOB), which can then be used across all trees in the RF to assess both variable importance and prediction
performance (Breiman 2001, Liaw andWiener 2002, Strobl et al 2009). TheOOB error represents a robust and
unbiasedmeasurement of the prediction accuracy of the RFmodel (Breiman 2001) and a reliable proxy of the
accuracy of thefinal gridded population datasets produced using the RF-based approach (Sorichetta et al 2015,
Stevens et al 2015).

Predictions of population density from the RFmodel at the pixel level are inherently biased because the
model is parameterized at the administrative unit level. Therefore, the pixel level estimates of population density
are used asweights to anchor a dasymetric redistribution approach (Mennis 2003) of administrative census
counts redistributed to a regular grid offixed spatial resolution (100 m). Full details on the combinedmachine-
learning and dasymetricmodeling technique is found in (Gaughan et al 2015, Sorichetta et al 2015, Stevens et al
2015).

TheWorldPopmodel is parameterized for each year of interest using an aggregated set of administrative
units (Laos n=10035, Cambodia n=1621, Vietnam n=688) and bymaintaining the same consistent
boundary definitions over time (Gaughan et al 2016). By relying on census data to inform themodeling process,
the gridded population outputs effectively represent residential population counts which is in contrast to data
such as Landscanwhichmodels ambient population counts (Dobson et al 2000). In addition, the 100 mgridded
population datasets are eventually spatially aggregated (by summing population per grid cell) and coregistered to
match the 1 km spatial resolution outputs from theODIACmodel. Population grids were done for 2000, 2005
and 2010. In terms of the RFmodel parameterization, subnational population counts for 2000, 2005 and 2010
were either extracted, interpolated, and extrapolated using two census dates (i.e., t0 and t1) for all three countries
(i.e., 2005 and 2010 for Laos, 1998 and 2008 for Cambodia, 1999 and 2009 for Vietnam). This was done by
calculating the growth rate of each administrative unit within each country and applying it to the corresponding
population counts (Doxsey-Whitfield et al 2015). For each administrative unit, the corresponding exponential
growth rate (r)was calculated using the following formula:

r
t

P

P

1
ln , 11

0

=
⎛
⎝⎜

⎞
⎠⎟ ( )

where r is the growth rate of a given administrative unit between t0 and t ,1 P0 is its total population at time t ,0 P1 is
its total population at time t ,1 and t represents the number of years between t0 and t .1

Geospatial covariates used as input to theRF have been standardized, harmonized, and co-registered, to the
CIESINGridded Population of theWorld v4 archive of administrative-boundaries (http://sedac.ciesin.
columbia.edu/downloads/docs/gpw-v4/gpw-v4-country-level-summary-rev10.xlsx) across all three
countries of interest.We followed the approach outlined inGaughan et al (2016) and used both temporally-
invariant and temporally-explicit covariates (table 1)while excludingNTLdata. Temporally-invariant data
include topography and slope, average annual precipitation and temperature (representative of the current
conditions), presence ofmain roads and their intersections, waterways, water bodies, and coastlines.
Temporally-explicit data, for 2000, 2005 and 2010, include the European Space Agency (ESA)Climate Change
Initiative (CCI) land cover layers and presence of protected areas (WDPA2017). For all temporally-invariant
categorical data we produced the corresponding ‘distance-to’ covariate dataset, while for the temporally-explicit
categorical data we calculated the distance-to-edge covariates, where distances inside the edge are negative and
distances outside the edge are positive. See (Lloyd et al n.d.) for the productionmethodology for how the various
covariate datasets were assembled and harmonized. Figure 1 shows the entire study regionwith land cover,
roads, and rivers displayed alongwith panels ofmain city area gridded population patterns for 2010.

2.3. Relationships between remotely-sensed nightlights andpopulation
Todetermine the agreement between remotely-sensedNTL and gridded population, we examine the
relationship between non-point source CO2 emissions and population atmultiple administrative levels over the
three time points.We then compare theNTL-disaggregatedCO2 emission estimates (i.e. theODIACmodel) to a
disaggregation of theCO2 emission estimates by the gridded population (i.e.WorldPopmodel) for each year. By
comparing disaggregations based onNTL versus a simple, per capita disaggregationwe can directly interrogate
howdisassociation between nightlights and population estimatesmight affect the utility of either approach.
Informing the underlying gridded populationmodel is a set of geospatial covariates (table 1) that provide some
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Table 1.Data description for geospatial covariates used in the populationmodel.

Name Source Data type and nominal spatial resolution Data product Acquisition year

Viewfinder Panoramas De Ferranti, J, http://viewfinderpanoramas.org/ Continuous raster, 3 arcseconds (~100 mat the

Equator)
Topography, Slope ~2000

ESACCI LandCoverMaps –V2.0.7 European Space Adency (ESA)&Université CatholiqueDe Lou-

vain (UCL)
Categorical raster, 10 arcseconds (~300 mat the

Equator)
Land cover classes 2000–2015

Open StreetMap OpenStreetMap Foundation (OSMF)&Contributors Categorical vector Main roads,main road intersections and

waterways

2016

ESACCIWBv4.0 European Space Agency (ESA) Categorical binary raster, 30 arcseconds (~150 m
at the Equator)

Water bodies 2000–2012

WorldClim 2.0 Fick, S.E. andR.J.Hijmans Continuous rasters, 30 arcseconds (~1 kmat the

Equator)
Mean annual temperature and

precipitation

1970–2000

WorldDatabase of Protected

Areas (WDPA)
UNEP-WCMC Vector Terrestrial andmarine protected areas 2000–2014

Global Population of theWorld (GPWv4)
Coastlines

CIESIN,Gridded Population of theWorld v4 Vector Protected areas
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insight as to the disaggregation of population counts, over space and time,making the population-driven
disaggregation approach useful to assess similarities and differences in howNTL, as a singular covariate,
redistributes theCO2 emission estimates.

To disaggregate by population, we summed the total population count to the national level and created a
population proportion layer for each year (e.g. 2010 people per pixel/total population by country). Next, we
multiplied the proportion of population through by the total CO2 by country for a given year.We did this for the
three years of interest (2000, 2005, and 2010) resultingCO2 emissions disaggregated by the populationmodel
described in section 2.2.We present differentmetrics to highlight differences inNTL-driven versus population-
drivenmodel outputs and identify spatial distributions related to the underlying data informing respective CO2

models for each year. In addition, as done by previous studies (Hogue et al 2016), we examine the agreement of
the twoCO2 emissionmaps at different spatial resolutions.

3. Results

3.1. TheNTLmodel (ODIACnonpoint source) and the POPmodel (WorldPop) for 2000, 2005, and 2010
TheNTLmodel indicates expanding source areas for all three countries in a spatially-explicitmanner from the
2000–2005–2010 period (figure 2). Vietnam,which is amore urbanized country, shows greater spatial
distribution in the estimatedCO2 emissions as the number of lit grid cells inVietnam are proportionally higher
than in Laos andCambodia.

Similar to theNTLmaps, the annual gridded population datamaps show a general increase in population
counts over time (figure 3). The percentage of variance explained by the RFmodel and the prediction error
associated to it are equal to 79%and 0.72, respectively, for all three years. The relative importance of a covariate
in the RFmodel is captured by percent increase inmean squared error (%MSE). Thismeans, in the ensemble
model prediction phase, that the lower the%MSE, themore important a given covariate will be relative to other
covariates when randomly selected and included in a node prediction. Results from themodel in this study show
that distance to roads and rivers are important to themodel in terms of random effects for all three years
(figure 1). Agriculture is also important in 2000 and 2005 but becomes slightly less so in 2010 (Supplemental
(S1)). Full plot overviews for themodel are provided in S1.

Figure 1. Spatial visualization of rivers, roads and land cover covariates in the nonparametric, ensemblemodel with sub-panels
denoting regions around four large cities in the region. Roads (black) and rives (blue)noted are in the first columnpanel, ESA land
cover in the second column and the 2010 gridded population output in the third column.
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3.2. Characterizing spatiotemporal change between theNTL-drivenmodel andPOP-drivenmodel for CO2

emissions
Figure 4 highlights some important differences in per pixel estimates of CO2 emissions from theNTL-driven
(i.e. ODIAC)model versus the POP-drivenmodel. Themost noticeable difference between figures 4(a) and (b),
is that the population-drivenmodel allocates estimates of CO2 emission to every grid cell whileNTLdoes not.
The gridded populationmodeling approachmay estimate fractional population in a given grid cell (Stevens et al
2015) andwill not predict zero in grid cells unless the administrative unit contains zero people. The type of
approach performs favorably, and inmany cases outperforms, other types of gridded populationmodeling
approaches (Reed et al 2018), whichmay translate into better gridded residential CO2 products. TheNTL-driven
model includes zero as a possible grid cell value (i.e. grey-shaded pixels infigure 4) and thusCO2 emissions are
more concentrated into certain areas for theNTL-drivenmodel rather than spread across the entire study area.

Whenwe difference theNTL-drivenmodel estimates from the POP-drivenmodel for disaggregatingCO2

emission estimates, the regional biases in theCO2 emission from theNTL-drivenmodel aremore apparent. In
figure 5, positive differences indicate grid cells where theNTL-drivenmodel estimates higher emissions and
negative differences indicate areas where population-basedCO2 emissions estimates are higher thanNTL-based
estimates. Thus, figure 5 illustrates that through time, nighttime lights-based emissions disaggregation tends to
concentrate those estimates in different ways than population-based estimates. It is clear that population-driven
model of emissions estimates, which excludes nighttime lights from ancillary data sources, tends to estimate
higher emissions outside of the highly urbanized and developed areas of Vietnam,Cambodia, and Laos (shown
by the orange-red tones infigure 5). These tend to be areas alongmajor roads, intersections, andwhere
population has been counted in census data butwhere nighttime lightsmay not be present. However, across
2000–2010we see an expansion in the concentration of CO2 source area estimates due to an increase in
nighttime lighted areasmost likely associatedwith development, as noted by the increase in ‘purple’ grid cells
from2000–2005–2010.

Figure 6 shows the level of disagreement between the two griddedCO2 datasets by spatially aggregating at
multiple spatial resolutions (i.e. by coarsening the two 1 kmgridded datasets to 2, 3, 5, 10, 20, 50 and 100 km). As
done inOda et al (2019), we calculated the sumof the absolute differences at grid levels and defined the initial
difference at 1 km as 100%. The results provide ameans to assess howquickly the various datasets for each

Figure 2.Per pixel estimates of CO2 emissions from theODIACnonpoint sourcemodel. The four largest urbanized regions are
highlighted for 2000–2005–2010. The values are given in the unit ofmetric tonne carbon/year/grid cell (1×1 km).
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country and year converge on similar patterns regardless of what data informs theCO2 disaggregation. At the
country level, while decreasing the spatial resolution of the two datasets especially at the first 25 kmor so, there is
a sharper gradient in the decrease of disagreement for Vietnam than for Laos andCambodia. This suggests that,
in general, there is a stronger correlation between theNTL and population spatial pattern inVietnam than in the
other two countries (with a better correlation in Laos thanCambodia), and that this correlation is stronger at
lower spatial resolutions. In other words, the coarser the spatial resolution of the griddedCO2 datasets, themore
similar the outputs that are obtained by aggregating theNTL-based and the POP-basedCO2 grid.

Temporally, by decreasing the spatial resolution of the two griddedCO2 datasets for Vietnam, the
disagreement is lowest for 2000 than for 2005 and 2010.Quite the opposite is observed for Laos andCambodia,
with the disagreement between the two corresponding griddedCO2 datasets generally lower for 2010 than for
2000 and 2005. In other words, while for Vietnam the outputs obtained by aggregating theNTL-based and POP-
basedCO2 grids decrease ‘faster’ overall compared toCambodia and Laos, the pattern across the different years
suggests Vietnamhas a different pattern of development and land use, which is reflected by the associations of
NTL to population across time.We also note that the differences did not converge to zero. At a coarser
resolution, the sumof differences is not largely impacted by the differences in small spatial patterns.We
interpret the remaining differences at coarse spatial scale as a proxy bias due to the use of theNTL.

3.3. Relationships between theODIAC-basedCO2 emissions andWorldPop population distribution for
multiple subnational levels
To examine different spatial aggregations of theCO2 emission estimates for 2000, 2005, and 2010, we sampled
theNTL-basedODIAC andWorldPop population distribution outputs using different administrative unit level
boundaries (i.e., n=11,163 (level 3), n=678 (level 2), and n=63 (level 1) administrative units) and show the
correlation coefficients for each level, by year, in table 2. The results highlight expected patterns for Vietnam,
with improved correlation over time and improved correlation for coarser administrative unit levels (1st level is
better than 2nd level, and better than 3rd level). This is consistent with results shown infigure 6 noting less
disagreement when data sets are spatially coarsened. Laos andCambodia show some deviation from this rule
whichwe discuss further below. In addition, we plot the percent shares in the county total population to the
NTL-based emissions from theODIACmodel which is located in the S1.

Figure 3.Per pixel counts of people for 2000–2005–2010. The fourmain urbanized areas are highlighted for each year (1×1 km).
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Wealso examined the numbers of the administrative units thatNTL failed to allocate CO2 emissions for
(administrative units with zero emissions) (S1). At thefinest administrative level for each country, the numbers
of the administrative units consistently decreased especially from2005 to 2010. For example, 2,847
administrative units inVietnam in 2000, which accounted for 54%of the total source area (approximated by the
sumof admin unit areas) and housed 15%of the total population, were not identified byNTL (zero emissions
allocated). In other words, usingNTL as the only proxy data for disaggregation failed to identify those 15%of the
population and the their CO2 emissions weremisallocated somewhere else. However, we believe these emissions
might not be significant as this 15%people’s activity do not seem to beCO2 intensive (no lights, or not
developed). In 2010, 31%of the source region remains zero emissions, but that only accounts for 6%of the
population. The numbers gradually decreased to 42% in 2005 and then 31% in 2010. Cambodia showed a drastic
change from92% in 2000, 90% in 2005 and then 46% in 2010. Laos also showed the change in the similar way
(62% in 2000, 63% in 2005 and 30% in 2010). This analysis ismeaningful as this is not impacted by the
differences in spatial patterns and population is constrained at these administrative levels.We present this as a
loose estimate of error associatedwithNTL-based emission downscaling at the administrative unit level.

4.Discussion

Inherent in gridded emissions data likeODIAC are at least two big sources of uncertainties: (1) total emission
errors and (2) spatial disaggregation errors. The analysis in this paper focuses on better understanding sources of
spatial errors as it relates to subnational estimates and its direct relevance on climatemitigation policy. To
examine the subnational level, we leverage another gridded data product, population data, to examine the
uncertainties with theODIACmodel. The population estimates use source data that traditionally stems from
censuses or surveys. That tabular information is then linked to irregular and varying sized administrative units
for subnational spatial representation (Tatem et al 2012, 2014) and provides the source input for gridded

Figure 4.Visual representation of 1 km spatial resolution in 2010 for (a) per pixel estimates of CO2 emissions from theNTL-driven
model (i.e. ODIAC) and (b)CO2 emissions estimates produced using population estimates on a per-pixel basis. The values are given in
the unit ofmetric tonne carbon/year/grid cell (1×1 km). In theNTL-drivenmodel (a), the light grey shadingwithin country
borders represent grid cell values of 0. There are no grid cell values of zero in the (b) populationmodel.
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populationmodels. Therewill be inherent error in the gridded population data due to the uncertainty in the
input data and themethod and scale ofmodel parameterization (Heuvelink 1998). However, there is still value in
comparing the different data sources, in this case, theNTL-drivenODIACmodel and theWorldPop population
data, for estimating griddedCO2 emissions and identifying areas of potential uncertainty in theODIACmodel.

Figure 5.Per pixel differences inCO2 emissions estimates produced using only nighttime light intensity,minus those produced using
population estimates (per capita emissions). Units are expressed in tonne carbon/year/grid cell and results are separated by the years
2000 (a), 2005 (b), and 2010 (c).

Figure 6.The level of disagreement between the two griddedCO2 datasets by the spatial resolution (pixel size) in kmversus the sumof
the absolute differences at the spatial resolution divided by the sumof the absolute differences at 1 km, presented as a percentage.
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At the various administrative unit levels, Vietnam shows the highest correlation between the distribution of
lights and population (table 2,figure S5 is available online at stacks.iop.org/ERC/1/091006/mmedia), with the
correlations improving across time. A higher correlation between theODIACmodel and population exists from
2000 to 2005 to 2010 due to increased development associatedwithmore ‘lit’ and highly populated grid cells.
(Hogue et al 2016,Oda et al 2019). In Laos andCambodia we see low correlations across different administrative
levels, with inconsistent trends temporally in their degree of association.We hypothesize thismay relate to the
concentration of both population andCO2 emission estimates to themore urbanized areas for those countries
and that therewas strong population growth patterns outpacing changes in the emission processes during the
time period analyzed (2000–2010) but further inquiry is needed to test those ideas.

For Vietnam, the fact that there is a sharper gradient of disagreement between the two griddedCO2 datasets,
especially in the first 25 km, for 2000 than for 2005 and 2010 (figure 6) could be due to the fact that the actual
correlation betweenNTL and population distribution, at least at the 1 kmgrid cell level, is decreasing over time.
Thismay be explained by the increasing use of lights for agricultural and aquacultural purposes (Chi Ling et al
2009). In other words, over time, lighted grid cells become increasingly associated to unpopulated grid cells
corresponding, for example, to dragon fruit plantations and/or aquaculture installations (Kumari et al 2016).
Conversely, in Laos andCambodia, the disagreement between the two griddedCO2 datasets decreases ‘faster’ for
2010 as the data is spatially coarsened than for the other two points in time suggest that the correlation between
NTL and population distribution at the grid cell level is improving over time.One possible explanationmight be
due to faster rates of development-related electrification and urbanization-related population densification than
Vietnam (Organisation for EconomicCo-operation andDevelopment 2018,UnitedNations 2019).

Infigure 5, we seeminimal differences in the use of theNTL data versus the population data as proxies for
estimating subnational CO2 emissions in less populated,more rural areas. However, the two proxies spatially
and temporally differ in their disaggregation of CO2 emissions for other areas due to the fact that the correlation
is not always high betweenNTL and human residence. Interestingly, theNTL-based disaggregation tends to
produce higher CO2 emission estimates inmore densely populated areas compared to the population-based
disaggregation techniquewhich ismore liable to allocate a lower value in densely populated environments
(Deville et al 2014, Dijkstra and Poelman 2014).

For theODIACmodel, the non-point source estimates fromnational CO2 emission inventories are
disaggregated solely based onNTLbrightness, as captured by theDMSP-OLS sensor (Oda andMaksyutov 2011,
Oda et al 2018). There are no subnational constraints imposed on the process of redistributingCO2 emission
estimates to 1 km×1 kmgrid cells. For the corresponding population-driven estimate of CO2 emissions, the
underlying populationmodel is parameterized based on subnational administrative units, alongwith a set of
geospatial covariates, which influences the redistribution of CO2 emission estimates in for each year.

The gridded populationmodel has amore complex technique forweighting the disaggregation for non-
point source estimates into 1 km×1 kmgrid cells. By using an ensemble of trees, the RF approach provides
flexibility for the type of data and type of relationship between predictor and response variables (section 2.3).
NTL data is one possible option for inclusion in the set of covariates of the RFmodel, although it was excluded
from the currentmodel due to endogeneity concerns in comparing to theODIACdata. The second part of the
model, the dasymetric constraint, is based on subnational totals for population. Thus, the populationmodel has
two levels of additional information for the redistribution of non-point source estimates—(1) a pixel-level

Table 2.Correlation coefficients between the spatial aggregations of the CO2

emission estimates based on theNTL-basedODIAC andWorld pop
population distribution outputs for 2000, 2005, and 2010.

Administrative

level

Number of

units 2000 2005 2010

Vietnam

1st 63 0.857 0.877 0.881

2nd 678 0.665 0.709 0.729

3rd 11,163 0.585 0.653 0.708

Laos

1st 18 0.548 0.567 0.675

2nd 142 0.595 0.566 0.663

Cambodia

1st 25 0.502 0.544 0.409

2nd 178 0.548 0.653 0.431

3rd 1,576 0.419 0.471 0.245
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population density weighting from the RFmodel and (2) a subnational constraint from administrative unit
totals.

Ultimately, the reliability of the gridded population data is a function of the input population counts, which
will vary on a country basis, the reliance of the use of ancillary variables with inherent error, and spatial grain of
the subnational constraint applied in themodel (Sinha et al 2019). There aremultiplemethods in the literature
formodeling gridded population, including those datasets used in other gridded emissions studies (Leyk et al
2019). Each technique has its own pros and cons but consistency in the considerations formodeling across space
and time is key for reliable comparisons of the gridded population products and any subsequent applications
such asCO2 emissions disaggregationmodels.

That said, the use of a gridded population product that has a set of underlying covariates informing the
estimates for population distribution provides a useful assessmentmetric for examining error and uncertainty in
theODIACmodel. Nighttime lights (NTL)will always be an imperfect proxy for capturing non-point source
emissions associated for FFCO2, and as past research has indicated, the knowledge of where people live in
addition toNTLhas potential to spatially refine these estimates (Oda et al 2019). It is particularly important,
therefore, that further research leveraging finer spatial resolution emissions data, where available, be used to
explore the uncertainty and sensitivity of these and similar approaches toCO2 disaggregation.

5. Summary

Recognizing the differentmodelingmethods that informdata proxies in the disaggregation of national CO2

emissions estimates has important implications for theCO2modeling community. Findings from this study
highlight differences in theNTL and population datasets to estimate subnational CO2 emissions for a region
where development and shifts in population distribution are uneven from2000–2010with varying growth
trajectories that are country and region specific.

Geospatial data-driven techniques to disaggregate emissions is an important step forward for policy-relevant
data products, evenwhile recognizing challenges that exist in reconciling spatial and temporal considerations of
data type,model application andmethods used in analysis. However,morework is needed to identify the
effective spatial resolution for such data and recognizing the underlying assumptions and data constraints of the
geospatial proxies is paramount for judging the correct proxies to use in analysis. CO2 gridded data are often
used as an input for atmospheric CO2modeling. Depending on the problem setting, the spatial resolution of the
modeling varies greatly from1 km tomuch coarser spatial resolutions. Finally, considering that emission
inventories are constructed for different compounds in a systematic way, the considerations of this study are
applicable to other compounds such as air pollutants from fuel combustion.
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