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Geographical factors have influenced the distributions and densities of global

human population distributions for centuries. Climatic regimes have made

some regions more habitable than others, harsh topography has discouraged

human settlement, and transport links have encouraged population growth.

A better understanding of these types of relationships enables both improved

mapping of population distributions today and modelling of future scenarios.

However, few comprehensive studies of the relationships between population

spatial distributions and the range of drivers and correlates that exist have

been undertaken at all, much less at high spatial resolutions, and particularly

across the low- and middle-income countries. Here, we quantify the relative

importance of multiple types of drivers and covariates in explaining observed

population densities across 32 low- and middle-income countries over four con-

tinents using machine-learning approaches. We find that, while relationships

between population densities and geographical factors show some variation

between regions, they are generally remarkably consistent, pointing to universal

drivers of human population distribution. Here, we find that a set of geographi-

cal features relating to the built environment, ecology and topography

consistently explain the majority of variability in population distributions at

fine spatial scales across the low- and middle-income regions of the world.
1. Introduction
While archaeologists have long stated that settlement patterns are complex and

multi-factorial, geography has always been a determinant of the location of

human settlements with humans primarily settling where resources are available,

such as coastal areas and arable lands [1–5]. Access to sufficient resources to meet

the needs of a population limit the population densities in any given location

while other locations may have climates and topography that are less conducive

to supporting human populations. However, the location of human populations

is not simply determined by the natural environment, i.e. environmental deter-

minism [6]. Since the agricultural revolution, humans have often been the

drivers of change in the natural environment, modifying it in ways to better

access resources/services (e.g. transportation networks, densification of services
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and production in urban areas) or to make the natural environ-

ment more productive and habitable (e.g. land conversion to

agriculture, wetland drainage, irrigation, shelter in settle-

ments) [7–11]. Sometimes humans have modified the

environment in ways that make it less habitable, such as

through pollution and desertification, or no longer habitable,

such as in the cases of radiation in areas surrounding Cherno-

byl or desiccation of the Aral Sea [8,12,13]. With these changes,

settlements and urban areas and populations continue to grow

and their spatial distributions continue to evolve [14–16].

Between 2015 and 2050, the UN estimates that the global

human population will grow by 2.4 billion [17]. Most of this

projected change is anticipated to occur in the least developed

countries and in urbanized areas [15,16]. Concurrently, Africa,

Asia, Latin America and the Caribbean are estimated to experi-

ence the highest rates of urbanization [15]. As a part of this

‘urban transition’, the majority of Africa and Asia are experien-

cing large rates of internal migration, international migration

and changes in the spatial distribution of natural population

growth [15,16]. While Latin America and the Caribbean are

predicted to experience decreasing urbanization rates, as was

the trend through the 1990s and the early 2000s, the region is

expected to have major demographic shifts. These rapidly

changing magnitudes, composition and distribution of

human populations imply a continued if not increasing need

for high-resolution spatially explicit population maps that

more accurately capture these changes to facilitate public

health, sustainability and policy planning in general.

Over the past 20 years, the advancement of statistical tech-

niques, availability of consistent geospatial data and rise in

processing power have been leveraged to more accurately

map populations over global scales. Such efforts include the

simple gridding of census data matched to administrative

boundaries that is undertaken for the Gridded Population

of the World (GPW) project [18], and the use of satellite

images of night-time lights to map urban areas and allocate

populations to them, in the case of the Global Rural Urban

Mapping Project (GRUMP) [19–21]. Other ongoing efforts,

including LandScan [22–24], the Global Human Settlement

Population Grid (GHS-POP) [25] and WorldPop [26], focus

on a multivariate approach, utilizing multiple geospatial

layers representing factors related to human population distri-

butions to disaggregate areal unit-based census population

counts to fine spatial resolution grid squares. These approaches

can assess the contribution of different factors in explaining the

observed population distributions (e.g. [26]), providing

valuable data on the drivers and correlates of these patterns.

Despite the development of these multivariate approaches,

there have been few globally representative comprehensive

studies on the relationships between population densities,

their associated covariates and the ancillary datasets that

represent the covariates at a sub-national scale. Only basic

within-country analyses have been undertaken in the course

of validation or accuracy assessment, yet no analysis across

low- and middle-income countries has occurred [26–29].

However, some local-scale case studies have investigated

associations between covariates and population or residential

land to better understand the correlates and drivers of popu-

lation distributions in different settings [30,31]. Additionally,

dasymetric modelling has evolved significantly over the past

few years and provided important insights into the relation-

ships between population and ancillary variables [32–35].

Such analyses have the potential to uncover fundamental
patterns in the correlates and drivers of population

distributions across the world.

Here, we undertake such an analysis for 32 low- and

middle-income countries, focusing on answering the following

two questions. (i) What datasets, representing drivers and

associated landscapes of population distribution, are the

most informative for accurately mapping populations at

global scales?; (ii) What are the differences, in terms of relative

importance of these datasets, between countries, between

regions of countries and within regions of countries? By quan-

tifying the relative importance of the drivers and correlates of

human population distributions in relation to observed popu-

lation densities, the question of how populations are

distributed, and how this varies geographically, can begin to

be addressed. Furthermore, it will allow informed develop-

ment of new ancillary datasets with a high probability of

importance when placed within a modelling framework and

potentially lead to more informed covariate choices in popu-

lation modelling that can expand the possible end-use

applications of the population data. Moreover, by better depict-

ing the relative importance of the drivers and associated

landscapes of populations at the global and regional scales

the accuracy and precision of high-resolution popula-

tion mapping and construction of future scenarios will be

furthered, benefitting all down-stream applications.
2. Material and methods
To assess the relationships between population densities and candi-

date correlates and drivers, we built a machine-learning-based

modelling framework to expose the relationships between sub-

national boundary-matched population census data and a library

of geospatial datasets. The population models considered in this

study are based on the random forest (RF)-based method as

described in Stevens et al. [26]. We took the RF regression model

objects for each sample country which were trained at the adminis-

trative unit level of the corresponding census-based population

data, extracted the covariate importance metrics, standardized

what the covariates were representing to facilitate comparisons

across models and analysed these data for differences between

and within covariate classes as well as within each covariate class

between all countries, between regions and within regions to

begin to address the possibility of geographic variability in these

relationships.
2.1. Random forest-based population models
RFs are a non-parametric, nonlinear statistical method that falls

within a category of machine-learning methods known as ‘ensem-

ble methods’. Ensemble methods take individual decision trees

that are considered ‘weak learners’ and combine them to create a

‘strong learner’. The benefits of ensemble methods are that general-

izability is increased, performance on large or small datasets is

improved and the ability of the method to model difficult learning

tasks is more effective. Compared with other ensemble methods

RFs are robust to noise, small sample sizes and over-fitting, yet

they need little in the way of parameter specifications [36–39].

RFs independently generate k number of unpruned decision

trees using ‘bagging’ [37,40]. Once a decision tree is grown, the

one-third of the bagged training data that the tree was not

grown upon remain and are known as the ‘out-of-bag’ (OOB)

data. The decision tree applied to these data and the accuracy of

the tree, as measured by the mean squared error (m.s.e.), are

stored as the OOB error for that tree [37]. The prediction error of

the entire RF model can be estimated by averaging the OOB

http://rsif.royalsocietypublishing.org/


layer stack
of covariates

summarized at
administrative unit level

unit of analysis for this study

random forest model
containing all trees

predict
weighting

layer at grid
cell level

OOB data
for estimating tree error

repeat until
tree growth
stop criteria
met

estimate OOB
error

by applying tree
to OOB data

grow trees
split data on

best predictors redistribute
population

counts

feature selection
random selection

of variables

train data
to grow

single trees
repeat until

specified number
of trees obtained gridded

population mapcensus-based
population density

bootstrap
sample

Figure 1. General process of using a random forest to created gridded population maps following Stevens et al. [26], where ‘out-of-bag’ (OOB) data are the
approximately one-third of the data not sampled for training any single tree.
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error of all trees [37]. The OOB error is also used for estimating

covariate importance by randomly permutating a given covariate’s

OOB data with random noise and calculating the average per cent

increase in the mean squared error, hereafter the Per.Inc.m.s.e.,

across all trees of the RF model which used the covariate [37].

For more details on the construction of RFs, see Breiman [37]

and Liaw & Wiener [38].

The RF method outlined by Stevens et al. [26] uses an RF

regression model and dasymetric mapping methods in a three-

step process to estimate a population layer from input census and

covariate data. The general steps are as follows: (i) iterative covari-

ate selection for the RF model, (ii) the fitting of the RF model,

using all available census units, and creation of a population den-

sity weighting layer from the created RF model, and (iii) the

dasymetric redistribution of population counts from census-based

administrative units to grid cells [29] using the population density

weighting layer [26,32,33]. We give a general schematic of the RF

process described by Stevens et al. [26] in figure 1. The covariate

selection process is identical to step 2, but iterates until the removal

of all covariates with a Per.Inc.m.s.e. less than zero. Data input to

an RF model varies on a country-by-country basis with high-

resolution country-specific datasets being used over coarser

resolution default datasets, when available. This last detail

required the standardization of what each covariate more generally

represented to facilitate comparison across models.

2.2. Census data
For this investigation, we sampled countries (n ¼ 32) from low- and

middle-income countries in four regions of the world where

available boundary-matched census data were available at an aver-

age spatial resolution (ASR) of 100 km2 or below: Africa, Central

America and the Caribbean (C. America and the Caribbean),

South America (S. America) and Southeast Asia (S.E. Asia) [41].

The sampled countries, shown in figure 2, were modelled upon
census data from varying years, with differing ASRs [41] of admin-

istrative units, and people per administrative unit, shown in table 1.

These regions were selected because of their continued and rapidly

growing importance in relation to world population [15,17].

2.3. Geospatial covariates and standardization
Human population density is highly correlated with environmen-

tal and physical factors [35], which can influence distributions of

population. As indicated by the literature and availability of

global data, the following factors were identified and used as pre-

dictive covariates: intensity of night-time lights [42], energy

productivity of plants [43], topographic elevation and slope

[44,45], climatic factors [46], type of land cover (LC) [27] and pres-

ence/absence of roads [47], water features [48], human settlements

and urban areas [49], protected areas [50] and locations of points of

interest (POIs) and facilities such as health centres and schools [51].

Rather than attempt to standardize the input covariates between

countries, we used the most contemporary available datasets on

a country-by-country basis to produce the population maps. See

Stevens and co-workers [26] and [29] for a typical set of ancillary

data included in a given model, with further details provided in

Lloyd et al. [52].

For every model run, information about the RF model

settings, covariates and their importance, metadata on the covari-

ate datasets themselves and the general results of the RF model

were output to summary files, which are included in the elec-

tronic supplementary material. From those summaries, we

extracted the region modelled, the total variance explained by

the model, the covariate names and the Per.Inc.m.s.e. for every

covariate included in the model [37]. We then examined the cov-

ariates for all sampled countries to reclassify them into the

covariate classification groups shown in table 2 as informed by

common themes through the literature and patterns seen through

population modelling of numerous countries. The primary

http://rsif.royalsocietypublishing.org/
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purpose of this classification system was to facilitate comparisons

between the country models via a standardized framework.

We would expect that covariates within the urban/suburban

extents and built environment and urban/suburban proxy classes

would be the most important for predicting population density as

these typically capture settlements either implicitly or explicitly

[10,64–66]. Transportation networks and facilities and service

classes would also be expected to be consistently important as trans-

portation networks exist solely to facilitate the movement of people,

goods and ideas [66]. Responding to the classic ‘location–allocation’

problem, facilities and services, e.g. schools and health centres, are

often located to promote access by and service to a population.

Rivers/waterbodies/waterways are unique in that they can be

used by people as both a transportation network and a resource,

an attraction for population, but, in some cases, could be perceived

as more hazard than resource, e.g. floods, and would therefore serve

as a disincentive for a population locating near them. Previous

studies have shown that landcover classes can be used for predicting

population density by predicting either their absence, e.g. natural or

bare surface land cover, or their presence due to their direct impact

on land use (LU), e.g. cultivated land cover [8,27,32].
2.4. Analysis
From the independently modelled countries, we synthesized

generalized data on the relative importance of various covaria-

tes in predicting population densities. All analysis and data

handling was performed in the R Statistical Environment, ver-

sion 3.2.2, with a ¼ 0.05 significance levels and appropriate

corrections for multiple outcomes where indicated [67].

To account for the differing number of total covariates in each

country’s model, we calculated a weighted importance rank

(WIR). Within each country, we ranked covariates by descending

Per.Inc.m.s.e. and then weighted them by the total number of

covariates in the final model for a given country, calculated as

WIR ¼ within-country ranked importance

total number of covariates in country model
:

Within a given country, a WIR of zero indicates the covariate

of highest importance and a WIR of 1 is the least important cov-

ariate. Hereafter, unless explicitly stated, within the text, variable

class importance is referring to the WIR. To examine potential

differences in variable class importance, we used both analytical

and graphical methods.

Given the non-normal nature of the covariate importance data,

we used the non-parametric form of the Kruskal–Wallis test to test
for significant differences between covariate classes across all

countries [68]. The inter-regional analyses were of a hierarchical

nature using data subsets of a given covariate class and using

the region category as the grouping variables, but still using the

Kruskal–Wallis test [68,69]. The intra-regional analyses subset the

data to a given region and a given covariate class then used a

Kruskal–Wallis test to determine whether significant differences

in importance for the given covariate class existed between

countries of the same region [68]. If any of the Kruskal–Wallis

tests were significant they were followed up with post hoc Dunn

tests, using Holm’s correction for multiple outcomes, to determine

between which covariate classes or regions the significant

differences occurred [70,71].
3. Results
The consistent patterns of covariate importance to predict-

ing population density were observed between all sampled

countries globally, with similar patterns observed between

regions of countries. The correlates pertaining to urban areas

and, more surprisingly, topographical features were the most

important predictors of population density at all scales of

analysis and were the only covariate categories which were con-

sistently significantly more important than other categories,

again at all scales.

3.1. Global
We present global covariate importances in figure 3. The five

most important covariate classes, in descending order of

median importance, were urban/suburban extents (0.32),

built environment and urban/suburban proxies (0.35),

climatic/environmental variables (0.37), populated place cov-

ariates (0.42) and transportation networks (0.50). This result

matches expectations, as the five most important covariate

classes (figure 3) are also the most often included in the final

population models.

Globally, for predicting population density, we found that

built environment covariates were significantly more

important than classified populated place ( p , 0.01),

natural/semi-natural vegetation LC ( p , 0.01), general classi-

fied LU ( p ¼ 0.04), protected LU ( p , 0.01) and rivers/

waterbodies/waterways covariates ( p , 0.01). We also found

that urban/suburban extents were significantly more important

http://rsif.royalsocietypublishing.org/


Table 1. Sampled countries and selected characteristics including the variance explained by the country-specific random forest model. admin., administrative;
avg., average.

country ISO region
census year
(admin. level)

admin.
units

avg. spatial
resolution (km2)

people per
unit (thousands)

variance
explained

Kenya KEN Africa 1999 (5) 6606 9 4.3 83%

Morocco MAR Africa 2004 (4) 1497 16 21 80%

Mali MLI Africa 2009 (4) 687 43 22 85%

Malawi MWI Africa 2008 (2) 12 557 22 59 79%

Namibia NAM Africa 2011 (2) 5475 12.28 21 96%

Nigeria NGA Africa 2006 (2) 774 34 205 88%

Rwanda RWA Africa 2002 (4) 9183 1.68 1.2 69%

Senegal SEN Africa 2009 (4) 331 24 37 91%

Uganda UGA Africa 2002 (4) 5018 7 6 85%

Bolivia BOL C. America and

Caribbean

2012 (2) 112 97.7 91 65%

Costa Rica CRI C. America and

Caribbean

2011 (3) 469 10.4 9.8 92%

Cuba CUB C. America and

Caribbean

2012 (2) 168 25.6 68 82%

Dominican

Republic

DOM C. America and

Caribbean

2010 (3) 155 17.6 64 86%

Guatemala GTM C. America and

Caribbean

2012 (2) 333 18.0 46 80%

Haiti HTI C. America and

Caribbean

2009 (4) 570 6.9 17 84%

Mexico MEX C. America and

Caribbean

2010 (2) 2456 28.0 48 92%

Nicaragua NIC C. America and

Caribbean

2012 (3) 137 29.4 43 79%

Panama PAN C. America and

Caribbean

2010 (2) 74 31.04 49 74%

Puerto Rico PRI C. America and

Caribbean

2010 (1) 78 13.3 48 74%

Argentina ARG S. America 2010 (2) 526 73.0 78 88%

Brazil BRA S. America 2010 (4) 5565 5.1 36 84%

Colombia COL S. America 2013 (4) 1115 32.0 42 84%

Ecuador ECU S. America 2010 (4) 978 16.2 15 82%

Peru PER S. America 2012 (2) 194 81.7 155 63%

Venezuela VEN S. America 2011 (2) 339 51.6 87 71%

Cambodia KHM S.E. Asia 2008 (3) 1621 10.51 8.6 92%

China CHN S.E. Asia 2010 (4) 2922 57.28 458 95%

Indonesia IND S.E. Asia 2010 (4) 79 277 4.91 3.0 81%

Myanmar MMR S.E. Asia 2014 (3) 326 45.29 164 94%

Nepal NEP S.E. Asia 2011 (4) 3973 6.08 6.8 92%

Thailand THA S.E. Asia 2010 (3) 7416 23.67 9.0 88%

Vietnam VNM S.E. Asia 2010 (3) 688 21.85 123 93%
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than protected LU ( p , 0.01). Furthermore, we observed that

climatic/environmental variables were significantly more

important than populated place ( p , 0.01), natural/semi-
natural vegetation LC ( p , 0.01), general classified LU ( p ¼
0.02), protected LU ( p , 0.01) and rivers/waterbodies/water-

ways covariates ( p , 0.01). Interestingly, we observed no

http://rsif.royalsocietypublishing.org/


Table 2. Reclassification scheme to standardize covariates into variable classes representing spatial drivers and determinants of population. LC, thematically
classified land cover; LU, classified land use; nat., natural; OSM, Open Street Map; semi.-nat., semi-natural; veg., vegetation. Note: The references are not
exhaustive, but are characteristic of most models. Any of these covariates could be replaced by a country-specific dataset sourced from a one-off source or
country partner. Refer to country-specific metadata files provided with the source download from www.worldpop.org.

aggregated variable class drivers, correlates and covariates

natural/semi-natural vegetation land cover LC nat. and semi-nat. veg.—woody [53,54]

LC nat. and semi-nat. veg.—shrubs [53,54]

LC nat. and semi-nat. veg.—herbaceous [53,54]

LC nat. and semi-nat. veg.—other mix [53,54]

LC nat. and semi-nat. veg.—aquatic veg. [53,54]

cultivated/managed land cover LC cultivated terrestrial and managed lands [53,54]

natural bare surfaces land cover LC natural bare surface [53,54]

artificial surface land cover LC urban areas [53,54]

LC rural settlement [53,54]

no data LC no data [53,54]

residential land use LU residential [55]

non-residential land use LU industrial [55]

LU farms [55]

protected land use e.g. protected natural areas [56]

general classified land use e.g. multiple classified land uses provided to model as a single covariate [55]

urban/suburban extents global human settlement layer [57]

Schneider MODIS [58]

built environment and urban/suburban proxies LC urban areasþLC rural settlement [53]

lights at night imagery [59]

building footprints [55]

classified populated place (hierarchical) e.g. city, town, village, etc. [55]

transportation networks roads [55,60]

railways [55]

climatic/environmental elevation and slope [61]

net primary productivity [62]

temperature [63]

precipitation [63]

facilities and services schools [55]

police [55]

nutrition [55]

health facilities [55]

places and POIs OSM places [55]

OSM POIs [55]

rivers/waterbodies/waterways LC water [53,54]

rivers [55]

waterbodies/waterways [55,60]

populated place e.g. gazetteer-type data [55,60]
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significant difference in importance between the urban/sub-

urban extents and the built environment and urban/

suburban proxy classes. In table 3, we show test results for sig-

nificant differences between covariates of the top five

important covariate classes when compared with all other cov-

ariate classes. The complete results are detailed in the

electronic supplementary material.
3.2. Inter-regional
Another POI was that the strong patterns of association seen

at the global level were largely consistent when drivers and

correlates were examined between regions. The only

significant differences between regions were seen for the

non-residential LU variable and the rivers/waterways/

waterbodies variable, the latter shown in table 4. Non-residential

http://www.worldpop.org
http://rsif.royalsocietypublishing.org/


Table 3. Selected results of the pairwise post hoc Dunn test with Holm’s correction for multiple outcomes of global WIR of covariate classes. See table 2 for
descriptions and references for the variable classes. LC, land cover; LU, land use. See the electronic supplementary material for results across all classes. Global
Kruskal – Wallis results: d.f. ¼ 15, chi-squared ¼ 96.147, p , 0.01. Full precision of the values is provided in the electronic supplementary material.

variable class

corrected Z-value (corrected p-values)*

built env. and urban/
suburb. proxies

climatic/
environmental

populated
place

transportation
networks

urban/suburb.
extents

class of pop. place 5.04 (,0.01) 5.53 (,0.01) 2.41 (1.00) 2.41 (1.00) 3.43 (0.06)

climatic/environmental 0.30 (1.00) — 1.49 (1.00) 3.20 (0.14) 0.72 (1.00)

facilities and services 2.06 (1.00) 2.36 (1.00) 0.48 (1.00) 0.16 (1.00) 1.27 (1.00)

cultivated/managed LC 3.43 (0.37) 3.20 (0.14) 1.18 (1.00) 0.74 (1.00) 1.98 (1.00)

natural/semi-natural

vegetation LC

4.82 (,0.01) 5.44 (,0.01) 1.90 (1.00) 1.76 (1.00) 2.98 (0.28)

nat. bare surfaces LC 3.19 (0.14) 3.46 (0.06) 1.60 (1.00) 1.27 (1.00) 2.35 (1.00)

general classified LU 3.58 (0.04) 3.81 (0.02) 2.15 (1.00) 1.93 (1.00) 2.84 (0.42)

non-residential LU 1.55 (1.00) 1.71 (1.00) 0.64 (1.00) 0.25 (1.00) 1.16 (1.00)

protected LU 5.52 (,0.01) 5.91 (,0.01) 3.19 (0.14) 3.31 (0.10) 4.13 (,0.01)

residential LU 3.37 (0.08) 3.56 (0.04) 2.16 (1.00) 1.93 (1.00) 2.77 (0.52)

places and POIs 2.08 (1.00) 2.38 (1.00) 0.51 (1.00) 0.11 (1.00) 1.29 (1.00)

populated place 1.26 (1.00) 1.49 (1.00) — 0.68 (1.00) 0.69 (1.00)

rivers/waterbodies/

waterways

4.80 (,0.01) 5.28 (,0.01) 2.27 (1.00) 2.20 (1.00) 3.27 (0.11)

transportation networks 2.76 (0.52) 3.20 (0.14) 0.68 (1.00) — 1.61 (1.00)

urban/suburban extents 0.48 (1.00) 0.72 (1.00) 0.69 (1.00) 1.61 (1.00) —
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Figure 3. Global variable class weighted rank of importance based upon covariates included in a given country’s final model, where zero represents the highest rank. The
mean is represented by a white diamond; the median is represented by the black bar; and the whiskers represent the maximum and minimum values within 1.5� the
inter-quartile range. See table 2 for descriptions and references for the variable classes. LC, land cover; LU, land use; WDPA, World Database on Protected Areas.
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LU was significantly more important in C. America and the

Caribbean than in S. America ( p ¼ 0.02; Z ¼ 2.35). As

shown in table 4, rivers/waterbodies/waterways were sig-

nificantly more important in Africa ( p , 0.01; Z ¼ 3.78) and
S.E. Asia ( p , 0.01; Z ¼ 4.08) than in C. America and the

Caribbean.

The consistency of importances within covariate classes

across regions becomes apparent when plotting the
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Table 4. Results of the pairwise Dunn test with Holm’s correction for
differences in WIR of variable class by region within the rivers/waterbodies/
waterways class. Corrected Z-score and corrected p-value, in parentheses, are
given. Full results for all variable classes between regions, including non-
significant findings, are provided in the electronic supplementary material.
Kruskal – Wallis results: d.f. ¼ 3, chi-squared ¼ 20.281, p , 0.01.

region Africa
C. America
and Caribbean S. America

C. America

and Caribbean

3.78 (,0.01) — —

S. America 1.21 (0.45) 2.32 (0.08) —

S.E. Asia 0.77 (0.45) 4.08 (,0.01) 1.79 (0.22)
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importance, with the inter-quartile range (IQR), as done in

figure 4. It can first be noted that many of the covariate

class IQRs overlap between regions, with very similar

median importances and variation seen for climatic/environ-

mental covariates, transportation networks and cultivated/

managed LC. There is more variation in importance than

expected between regions for covariates of urban/suburban

extents and the built environment and urban/suburban

proxies. The findings from table 4, and all the inter-regional

tests included in the electronic supplementary material,

agree with the distributions shown in figure 4.

3.3. Intra-regional
Like global patterns, there were no differences between the

importance of the covariates urban/suburban extents and

built environment and urban/suburban proxies within any

region. Within any single region, we found no significant

differences in patterns of importance between countries for
all given covariate classes. However, between covariate classes

across all countries within a given region, we found significant

differences within the C. America and the Caribbean and

S. America regions and display these in table 5. Similar to the

global results, we found within S. America that built environ-

ment and urban/suburban proxies were significantly more

important than classified populated place ( p , 0.01), protected

LU ( p , 0.01) and rivers/waterbodies/waterways covariates

( p ¼ 0.01). Also within S. America, we found that climatic/

environmental variables were significantly more important

than classified populated place ( p , 0.01), natural/semi-natu-

ral vegetation LC ( p ¼ 0.02), general classified LU ( p ¼ 0.04),

protected LU ( p , 0.01) and rivers/waterbodies/waterways

covariates ( p , 0.01). For C. America and the Caribbean, we

found that the covariates regarding built environment and

urban/suburban proxies ( p , 0.01), transportation networks

( p ¼ 0.03), urban/suburban extents ( p , 0.01) and climatic/

environmental variables ( p ¼ 0.02) were significantly more

important than rivers/waterbodies/waterways covariates.

Additionally, built environment and urban/suburban proxies

were found to be significantly more important than classified

populated place ( p ¼ 0.01), natural/semi-natural vegetation

LC ( p , 0.01) and protected LU ( p , 0.05). Full results includ-

ing the non-significant findings are included in the electronic

supplementary material. We illustrate the consistency of the

importance of distribution and their relative importance

regionally for each covariate class graphically in figure 5.
4. Discussion
The majority of predicted population growth across the globe

by 2050 is expected to occur in low- and middle-income

countries [14,15,17]. With this predicted growth in population

and urbanization challenges are expected to arise regarding

food security, health and infrastructure, to name but a few

http://rsif.royalsocietypublishing.org/
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Figure 5. Regional variable class weighted rank of importance based upon covariates included in a given country’s final model, where zero represents the highest
rank. The mean is represented by a white diamond; the median is represented by the black bar; and the whiskers represent the maximum and minimum values
within 1.5� the inter-quartile range. See table 2 for descriptions and references for the variable classes.

Table 5. Selected results of the pairwise Dunn test with Holm’s correction for differences in WIR by region between variable classes. Corrected Z-scores and
corrected p-values, in parentheses, are given. Full results between all variable classes within regions, including non-significant findings, are provided in the
electronic supplementary material. Full precisions of values are provided in the electronic supplementary material.

region variable class

built env. and
urban/
suburban
proxies

climatic/
environmental

urban/suburban
extents

transportation
networks

populated
place

S. America classified populated place 4.54 (,0.01) 5.09 (,0.01) 2.73 (0.63) 1.69 (1.00) 2.76 (0.57)

natural/semi-natural

vegetation LC

3.73 (0.10) 3.73 (0.02) 1.94 (1.00) 0.46 (1.00) 2.06 (1.00)

general classified LU 3.34 (0.09) 3.56 (0.04) 2.48 (1.00) 1.50 (1.00) 2.57 (0.95)

protected LU 4.29 (,0.01) 4.52 (,0.01) 3.32 (0.10) 2.55 (1.00) 3.36 (0.08)

rivers/waterbodies/

waterways

3.82 (0.01) 4.14 (,0.01) 2.65 (0.77) 1.63 (1.00) 2.72 (0.63)

C. America and

Caribbean

classified populated place 3.85 (0.01) 1.76 (1.00) 2.63 (0.88) 1.84 (1.00) 0.39 (1.00)

natural/semi-natural

vegetation LC

4.62 (,0.01) 2.30 (1.00) 3.03 (0.26) 2.36 (1.00) 0.61 (1.00)

protected LU 3.52 (,0.05) 1.88 (1.00) 2.66 (0.81) 1.95 (1.00) 0.75 (1.00)

rivers/waterbodies/

waterways

5.66 (,0.01) 3.66 (0.03) 4.07 (,0.01) 3.69 (0.03) 1.75 (1.00)
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[72–76]. These continued and heightened concerns regarding

the implications of the rapid pace of shifting populations

in low- and middle-income countries ensure a continued
demand for high-resolution gridded population maps in

these regions of the world. This continued demand reinforces

why understanding the drivers of the spatial distribution of
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populations to improve population mapping is important.

Moreover, an improved understanding of the fundamental dri-

vers of population distributions and their spatial variations is

of value for modelling future growth and designing strategies

around such models.

Our results show that variables related to built/urban areas

and to climatic/environmental covariates were the most

important for predicting population density and were the

only covariate classes that were significantly more important

than other variable classes, regardless of the scale of analysis.

This study begins to quantify commonly held concepts

regarding the drivers and correlates of human population

distributions, e.g. urban areas are associated with denser

populations. Having quantified these patterns globally and

regionally allows future work on the more unique aspects of

location-specific distributional relationships of populations

to be placed within the context of these larger-scale findings,

and to help relate observed and past population distributions

to historical and cultural contexts and the presence or absence

of resources/hazards.

The finding that built area-related covariates were the most

important in predicting population density should not be a sur-

prise and it aligns with expectations that an estimated 54%

of the world’s population live in urbanized areas [15]. There

are numerous examples where population density was an

important predictor of urban area extent [77–80]. This study

shows that this relationship goes in the other direction as

well with built area extent being important in predicting popu-

lation density. However, caution should be used when using

the newer urban/settlement feature datasets such as global

human settlement layer and global urban footprint. While

they are improvements on the thematically classified ‘urban’,

making use of spectrally and spatially refined optical and

radar-based data, they are known to be most accurate in

dense urbanized areas [64,65], leading to population model

biases in less densely populated or rural contexts by virtue of

the settlements being missed in the input covariates [26].

We were surprised how important the climatic/environ-

mental covariate category was in predicting population

density. While the category was not broken up for subsequent

testing, by examining the covariate importance plots of individ-

ual countries we believe that this importance was largely driven

by elevation covariates, including derived slope. Previous

studies have shown that population is prevalent in the lower

elevations of resource-rich coastal zones, deltas and river valleys

[81–83] and it is simply easier to build on relatively shallow–

moderate slopes than on steep slopes. There is also precedence

for transportation and elevation covariates being predictive of

urban or built land cover, corroborated byour finding that trans-

portation networks and climatic/environmental covariate

classes were consistently important predictors of population

density [27,84,85]. Water-related covariates being consistently

less important than crop or natural vegetation landcover covari-

ates (figure 3) could be a result of the resource/hazard

relationship [86] that populations have with waterbodies,

which of course is highly context dependent.

Differing data quality of input covariates to the models ana-

lysed here should be kept in mind when interpreting these

results as they directly affect the observed importance, or

non-importance, of the covariates. For instance, the significant

difference seen between C. America and the Caribbean and

Africa and between C. America and the Caribbean and S.E.

Asia within the rivers/waterbodies/waterways covariate
class (table 4) is most likely to be due to the different thematic

land cover sources used for those regions. While all landcover

data used were adjusted to a standard thematic framework and

resampled to 100 m [27], the majority of the Africa models used

the 300 m resolution Globcover data whereas the S.E. Asia and

the C. America and the Caribbean data were based upon the

commercial, 30 m resolution, Geocover data [28]. While

C. America and the Caribbean and S.E. Asia both used the Geo-

cover dataset, they also sourced OpenStreetMap [55] for data

pertaining to river features. OpenStreetMap varies widely as

to completeness, coverage and data quality [87,88]. So, we

would speculate that the observed significant differences

were not likely to be indicative of actual differences in how

the population relates to water features between those regions,

but are the result of different data sources for the built area-

related covariates being used (table 2). Similar differing data

quality or completeness issues are likely to be at the source of

the significant differences between regions seen for the residen-

tial LU variable, which is entirely based on OpenStreetMap

data [55].

These findings are valid only for a specific spatial resolution

and modelling scale that may or may not maintain the same

structures and relationships at a finer scale, as is typically the

case with the modifiable areal unit problem (MAUP) [89].

All covariates are affected to some degree because they are all

resampled to 100 m and are further aggregated by some sum-

mary measure at the administrative unit level prior to input

in the RF from which our covariate importance metrics are

derived [26]. Variations in data quality of the census-based

population counts and the differing number of administrative

units used in each region’s countries modelled can partly

explain the variance in importances within variable classes

between regions. This follows the scale effect of the MAUP,

which states that as the number of areal units is decreased there

is a decrease in the variability of the observations corresponding

to the areal units [89]. The potential of the coarseness of the

polygonal census units to have an effect on this variability is

less clear, but is likely to have an effect similar to the MAUP

zonation effect [89]. So, while we observed very consistent pat-

terns of importance between classes of variables and

population density, this is based upon country-level averages

of importance derived from a country-specific level of sub-

national units and then analysed at the country level across

all countries and between and within regional groupings of

countries. Were we to change the groupings, e.g. change the

level of sub-national units from which a country-level RF is con-

structed, then, following the MAUP, the results would be likely

to change. However, given that no significant differences in

importance for any covariate class between countries within a

given region were found, it would appear that the regional

groupings maximized internal homogeneity, better facilitating

inter-regional testing for differences.

There are inferential limits to using the RF model to ident-

ify/approximate the structure of covariate class relationships

to population density. Unlike multiple linear regressions or

single regression trees where coefficients and confidence

intervals can be quantified, the numerous trees in an RF pre-

clude the tracing of the regression from input to prediction

[37]. The strength of an RF to capture nonlinear relationships

of covariates and their complex interactions, through its

numerous trees, does not make for simple interpretations of

the underlying mechanisms of the modelled phenomenon,

in this case the driver and correlates of population

http://rsif.royalsocietypublishing.org/
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distribution [37]. Covariate importance within an RF is also

complex because of those same nonlinear relationships and

interactions and results in a covariate’s importance within

an RF being highly conditional on all other covariates pre-

sent, with similar results not guaranteed in other models,

even for the same country [38].

Another consideration when evaluating the importance of

covariate classes and their relationships to population density

is the varying temporality of the covariate datasets, which

may not match the date of the input census data. Therefore,

the modelled relationships are imperfect to begin with, as it is

impossible to have complete temporal agreement between all

input datasets because of well-known availability constraints.

Furthermore, the quality of census data varies from country

to country as well as from census to census, with completeness

and spatial resolution of the administrative units being variable.

Further investigating these covariates in relation to popu-

lation density could involve utilizing a different modelling

framework that would allow for more inferential power as to

the structure and nature of the relationships between these cov-

ariates and population density. Additionally, focusing our

study on specific covariate classes, such as the urban-/subur-

ban-related variable classes, by sourcing novel and

forthcoming datasets that help illuminate the heterogeneity

within these areas, both internally and across different

countries and regions, could increase the predictive ability of

a population model regardless of the framework. As these

population datasets are scaled up to global extent, the question

occurs as to whether these trends persist in high-income

regions and once a consistent set of covariates is used for

modelling all countries.

Better mapping of potential trends regarding drought [90],

water distribution [91], crop distribution [92] and forest distri-

bution [93] continue to improve and refine our spatial

awareness of resource distribution, change and environmental

patterns, globally. The relationships between population distri-

bution and various ancillary datasets outlined in this paper

provide relevant information for future work examining how

populations may react to a continually changing landscape.

In addition, potential exists to integrate such temporally

dynamic datasets into gridded population models for better

informing population distribution, not only over space but

also over time [94]. However, this study is simply a cross
section of covariate relationships to population density; a key

question is whether these relationships remain static or are

dynamic through time and the answer to that question is of

great importance to population growth models, and other

population-related fields, looking backwards and forwards

through time.
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