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As  countries  become  increasingly  urbanized,  understanding  how  urban  areas  are  changing  within  the
landscape  becomes  increasingly  important.  Urbanized  areas  are  often  the  strongest  indicators  of human
interaction  with  the  environment,  and  understanding  how  urban  areas  develop  through  remotely  sensed
data allows  for  more  sustainable  practices.  The  Google  Earth  Engine  (GEE)  leverages  cloud  computing
services  to  provide  analysis  capabilities  on  over  40 years  of  Landsat  data.  As a  remote  sensing  platform,
its  ability  to  analyze  global  data  rapidly  lends  itself to being  an  invaluable  tool  for  studying  the growth
of  urban  areas.  Here  we  present  (i)  An approach  for the  automated  extraction  of urban  areas  from  Land-
sat  imagery  using  GEE,  validated  using  higher  resolution  images,  (ii) a novel  method  of  validation  of
the  extracted  urban  extents  using  changes  in  the  statistical  performance  of a  high  resolution  population
mapping  method.  Temporally  distinct  urban  extractions  were  classified  from  the  GEE catalog  of Landsat
patial demography 5  and  7 data  over  the Indonesian  island  of  Java  by using  a Normalized  Difference  Spectral  Vector  (NDSV)
method.  Statistical  evaluation  of  all of the tests  was  performed,  and  the  value  of  population  mapping
methods  in validating  these  urban  extents  was also  examined.  Results  showed  that  the  automated  clas-
sification  from  GEE  produced  accurate  urban  extent  maps,  and  that  the integration  of  GEE-derived  urban
extents  also  improved  the  quality  of  the  population  mapping  outputs.

©  2014  Elsevier  B.V.  All  rights  reserved.
ntroduction

Landsat imagery has proven to be useful in understanding global
rbanization trends over different timescales. Satellite-derived
ata have been integral in understanding trends in urban sprawl
nd many other dynamics of urbanization (Guindon et al., 2004;
ngel et al., 2005; Burchfield et al., 2006; Schneider and Woodcock,
008; Potere et al., 2009; Schneider, 2012; Taubenböck et al., 2012;
exton et al., 2013).
The Google Earth Engine (GEE) is an online environmental data
onitoring platform that incorporates data from the National Aero-

autics and Space Administration (NASA) as well as the Landsat

∗ Corresponding author at: 13706 Sun Court, Tampa, FL 33624, USA.
el.: +1 813 766 2801.

E-mail addresses: niravpatel65@gmail.com, nirav@ditoweb.com (N.N. Patel).

ttp://dx.doi.org/10.1016/j.jag.2014.09.005
303-2434/© 2014 Elsevier B.V. All rights reserved.
Program. After the USGS opened access to its records of Land-
sat imagery in 2008, Google saw an opportunity to use its cloud
computing resources to allow records of Landsat imagery to be
accessed and processed over its online system. This has enabled
users to reduce processing times in analyses of Landsat imagery
and make global scale Landsat projects more feasible (e.g., Hansen
et al., 2013). The 30 m spatial and multispectral resolution is ideal
for defining urban areas, and its revisit time is sufficient for mon-
itoring applications (Woodcock et al., 2008). Moreover, because of
Landsat’s temporal continuity from 1972 to the present day, it is a
popular platform to use for urban change analysis (Alberti et al.,
2004; Bagan and Yamagata, 2012; Rawashdeh and Saleh, 2006;
Yuan et al., 2005).
In the past two decades, the Landsat platform has been paired
with imagery from the Advanced Very High Resolution Radiometer
(AVHRR) (Hansen et al., 1998), the Defense Meteorological Satel-
lite Program’s Operational Linescan System’s nighttime imagery
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Elvidge et al., 1996, 1997, 1999; Sutton, 2003), and NASA’s Mod-
rate Resolution Imaging Spectroradiometer (MODIS) (Schneider
t al., 2003, 2009, 2010) to improve the accuracy of urban detection
nd mapping across large areas. The improvement of methods for
etecting urban extents has also driven improvements in popula-
ion mapping. Satellite imagery has formed the basis of many large
rea population mapping efforts, such as the Global Rural–Urban
apping Project (CIESIN, 2004) LandScan (Bhaduri et al., 2007) and
orldPop (Linard et al., 2012; Gaughan et al., 2013; The WorldPop

roject, 2014). Satellite-derived urban extents and, more generally,
and cover tend to form an important component of accurate pop-
lation mapping (Linard and Tatem, 2012; Linard et al., 2011), but
etailed data can often be costly or time consuming to produce. The
EE presents the possibility for analyzing and classifying satellite
ata with great speed, so that more relevant and accurate outputs in
erms of distributions of population can become a reality (Hansen
t al., 2013).

Here we present an approach for the automated extraction of
rban areas from Landsat imagery built into the GEE, and a novel
ethod of validation of this mapping using changes in the statisti-

al performance of a high resolution population mapping method
Stevens et al., 2014).

ethods

tudy area

The study area is the Indonesian island of Java, which, along
ith being the world’s most populous island, is also only the

ourth largest island in Indonesia but contains more than half
f the island nation’s population. Jakarta, the capital city is also
ocated on the island and is Indonesia’s largest city. The island is
61 miles long from east to west; it ranges in width from about
0 miles in the center to more than 100 miles near each end
Fig. 1).

rban extent extraction procedure

The urban extraction methodology proposed here is based on
upervised classification of multispectral data. In this work we
onsider “urban areas” all the portion of a scene with spectrum
imilar to selected training areas. These training areas include
uildings, roads, and other artificial surfaces. Therefore, in the fol-

owing “urban extents” do not correspond to “built-up extents”.
ur definition of urban areas is instead more similar to “impervious

urfaces.”
Accordingly, the implemented processing chain is a spectral-

ased analysis followed by a spatial regularization that is
ndertaken using the Google Earth Engine cloud computing envi-
onment. Processing and implementation in a cloud environment
llows for a consistent scaling of the computational efforts when
ealing with wide geographical areas. The extraction procedure

ncludes three steps, briefly detailed below: (i) preprocessing and
election of a set of Landsat scenes covering the geographical
rea and time span of interest, (ii) computation of the Nor-
alized Difference Spectral Vector index (NDSV), a collection

f spectral indices that have already been proven (Angiuli and
rianni, 2014) to be an efficient input to urban extent clas-
ification algorithms classification and, (iii) spatial-based post-
rocessing.
reprocessing and scene selection
Preprocessing includes orthorectification and coregistration of

ll the scenes, so that data acquired at multiple dates overlap. This is
one internally and seamlessly by the GEE platform at the ingestion
servation and Geoinformation 35 (2015) 199–208

of the data from the USGS repository. No radiometric intercalibra-
tion or atmospheric correction is performed, however. Although all
scenes are calibrated according to the sensor parameters, some dif-
ferences in radiance values due to the illumination and atmospheric
conditions still affect overlapping regions among scenes.

Scene selection is instead performed by our algorithm. Specifi-
cally, in order to reduce the Landsat data set to the most suitable
scenes, a filter on scene parameters is first applied, to consider
only those with less than 10% of cloud coverage and the highest
radiometric quality.

Implementation of the Normalized Difference Spectral Vector
index stack into the Google Earth Engine

Unlike threshold-based recognition of human settlement (one
index) approaches developed by Pesaresi et al. (2008) and Xu
(2008), the main input to the urban extent extraction outlined
here is the Normalized Difference Spectral Vector (NDSV), pro-
posed in the technical literature (Angiuli and Trianni, 2014) as a
means to group existing normalized difference indices (such as the
Normalized Difference Vegetation Index—NDVI, the Normalized
Difference Water Index—NDWI, and the Normalized Difference
Built-up Index—NDBI). NDSV includes in one single vector all the
possible normalized indexes that can be computed starting from a
Landsat 5 or 7 image, considering therefore 6 bands and 15 possi-
ble combinations (the dual ones are not considered as their result
is the same but with just the opposite sign).

NDSV includes in one single vector all the possible normalized
indexes that can be computed starting from the 30 m spatial res-
olution bands a Landsat 5 or 7 image. For each band pair this is
computed:

NDSVij = bi-bj

bi+bj
. (1)

Hence, using 6 bands and applying Eq. (1) to any possible pair
of different bands, a total of 30 indexes are obtained. Due to the
symmetry of the definition, 15 of them are only the negative of the
other ones, and can be discarded. Each pixel is thus characterized
by a set of values, some of which correspond to known indexes (e.g.,
NDSV43 = NDVI, NDSV42 = NDWI, NDSV45 = NDBI), while other ones
have not been explored so far.

Each pixel is thus characterized by a set of values that have been
at this point “labeled” only partially. Considering a radiometrically
and geometrically corrected Landsat scene, the NDSV features char-
acterizing urban areas, compared to other classes, are shown for a
few sample pixels in Fig. 2. It can be noted that urban areas exhibit a
distinct NDSV spectral signature which can be discriminated from
other classes by their distinct behavior in this new “multispectral”
15-dimensional space. Fig. 2 demonstrates NDSV profiles that can
be obtained from an image.

In summary, instead of relying on threshold-based recognition
of human settlements according to a single index (Pesaresi et al.,
2008; Xu, 2008), the procedure implemented in this work considers
more information as input to a suitable classification chain, aimed
at providing a consistent methodology that works in many different
environments, and is reasonably robust with respect to the date of
acquisition of the image and unaffected by differences in spatial
patterns.

Processing of multitemporal urban extents over Java
Four tests were conducted in order to validate the creation of

urban extents using the procedure discussed in the preceding sub-

sections. A census-based population disaggregation method was
used for validation, a method that rasterizes GIS data and dis-
tributes population counts based on the GIS data that is provided.
This method was used because it provides the ability to analyze
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Fig. 1. Map  of study area and Java a

ow the urban extents improve the statistical correlations in the
isaggregation process.

In three out of four tests, the urban extents were considered
s one of the inputs to a census-based population disaggregation
ethod (Stevens et al., 2014). In the first test, instead, the same
ethod was run using the original data sets detailed in Table 1

nd the land cover map, including urban extents, was taken from
he EarthSat Geocover land cover thematic mapper-based dataset
2007, 30 m)  by MDA  Federal (MDA  Federal Inc., 2007). Test 1 served
s the baseline data for validation because it does not use any
oogle Earth Engine urban extents and because its classification
as been validated by MDA  Federal, serving as a useful control test.

The qualitative differences of these different land cover-based
xperiments:

Test 1: EarthSat GeoCover Landsat Thematic Mapper (TM) derived
land cover data from MDA  Federal (2007).
Test 2: GEE urban extents for Java derived using three collections:
imagery from 2006, 2007. and 2008 merged with GeoCover.
Test 3: GEE urban extents for Java derived using three collec-
tions: imagery from 2009 T1 (January through April), 2009 T2
(May through August), 2009 T3 (September through December)
merged with GeoCover.
Test 4: GEE urban extents for Java derived using three collections:
imagery from 2008, 2009, 2010 merged with GeoCover.

The GEE urban extractions were obtained using Landsat 5 or
andsat 7 data sets, because both satellites were operative in the
ears of interest. Specifically, multiple Landsat images in the same

rea and covering a finite period of time were combined in a so
alled GEE collection, and each pixel was assigned the median value
or all images where it appears. Collections are a powerful way  to
et rid of many of the cloud-contaminated pixels, because clouds
istrative boundaries levels 1 and 2.

do not appear in the same position in all images. A better approach
would be to mask cloud pixels with a dedicated filter, a function
which is unavailable in GEE. Although we understand that cloud-
contaminated pixels may  still be present in areas with consistent
cloud coverage along the year, this technique was assumed as the
best available option. Additionally, it must be noted that collec-
tions change the radiometric properties of the data, reducing the
effectiveness of the proposed urban extent procedure. To reduce
this effect, urban extents for one year were obtained by subdivid-
ing the year into thirds. Computing collections for each of these
time periods involved extracting urban extents and then combining
the resulting maps by majority voting. Similarly, three year col-
lections were subdivided into thirds (one for each year) and then
combined by majority voting. To prove the usefulness of the pro-
posed approach for mapping urban extents (and derive population
counts) along multiple years, the fourth test repeats the approach
of the third one, but using Landsat data collected two years later
(2009 versus 2007).

Post-processing
Human settlements can be characterized by peculiar spatial

patterns, however, it is important to include a post-processing
step aimed at reducing issues related to misclassifications at the
pixel level. The simplest and most effective approach is to include
morphological operators aimed at discarding isolated pixels and
at improving the homogeneity of the extracted settlements with
respect to their spatial distribution. Additionally, as the classifica-
tion results may  be affected by spectral patterns (and sub-pixel

mixing problems) similar to urban ones in water bodies with high
turbidity (Carpenter and Carpenter, 1983; Foody, 2000), such as
inner reservoirs, coastal areas, and river estuaries, these zones
are automatically masked out from the classification in GEE using
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Fig. 2. Normalized difference spectral vector (NDSV

ncillary GIS data. Similar issues may  be caused by clouds, and thus
cloud removal” approaches had to be considered.

igh resolution population mapping method

As mentioned above, the population mapping algorithm in
tevens et al. (2014) is an essential portion of this study. Thus, its
rocessing steps are briefly described in the following paragraphs.

opulation data grid
The 130 census polygons for Java (Fig. 1) contained popula-

ion counts from the year 2010. The population mapping algorithm
utlined in Stevens et al. (2014) was used, where census counts
rom the census year are redistributed according to weights, then
djusted up/down based on rural and urban growth rates to a par-
icular year of interest (2007 in this case). This is usually based
n the classified urban/rural land cover (built pixels are classi-
ed as urban vs. rural using Schneider et al. (2010) urban/rural
ODIS-derived classifications), but in this circumstance uses the

ew GEE-derived urban delineations to identify urban built pixels.
he urban/non-urban delineation was integrated into the MDA  land

over data as “built” areas (“ BLT”). The particular year of interest
hat was selected was 2007 for all datasets, to pick one year for
ounts to match and for a point of comparison for the accuracy
ssessment detailed in section ‘Accuracy assessment’.
les for urban areas, vegetation, water, and bare soil.

The administrative units were used to delineate the areas where
the land cover data in continuous raster format and converted vec-
tor format are interpolated by means of the random forest method
to generate a weighting layer (Stevens et al., 2014). Once this
weighting layer is generated, population counts for each census
unit are distributed over the weighting layer to provide a map  of
population counts at a 100 by 100 meter resolution (See Table 1 for
detail on all covariate datasets used in the process).

Data preparation and the random forest population
disaggregation method

The general process used for the data preparation, modeling,
and validation for the population mapping is outlined in Fig. 3. Full
details on these steps are provided in Stevens et al. (2014). In brief,
the steps in green represent the data preparation tasks. The aggre-
gated population counts and the raster and vector layers shown in
Table 1 are then used to create a random forest model (Breiman,
2001) to predict log population density. Random forest (RF) models
are an ensemble, nonparametric modeling approach that grows a
“forest” of individual classification or regression trees and improves
upon bagging (Breiman, 1996) by using the best of a random selec-
tion of predictors at each node in each tree (Breiman, 2001; Liaw

and Wiener, 2002).

As expected when combining multiple observations that are
mostly independent, the best, most unbiased prediction was
arrived at by taking the mean of all trees within the forest and
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Table  1
Test-specific data sources and variable names used for population density estimation used for dasymetric weights.

Type Variable name(s)* Description Data for Indonesian Island of Java

Census Country-specific census and scale 2010, admin-level 2 (GADM, 2014), (GeoHive, 2014)
Land  cover lan cls011, lan dst011 Cultivated terrestrial lands Landcover Experiments detailed in Table 2

lan cls040, lan dst040 Woody/trees
lan cls130, lan dst130 Shrubs
lan cls140, lan dst140 Herbaceous
lan cls150, lan dst150 Other terrestrial vegetation
lan cls160, lan dst160 Aquatic vegetation
lan cls190, lan dst190 Urban area
lan cls200, lan dst200 Bare areas
lan cls210, lan dst210 Water bodies
lan cls230, lan dst230 No data, cloud/shadow
lan cls240, lan dst240 Rural settlement
lan cls250, lan dst250 Industrial area
lan clsBLT, lan dstBLT Built, merged urban/rural class

Continuous
raster-format

lig Lights at night Suomi VIIRS-derived (NOAA, 2012)
tem  Mean temperature, 1950–2000 WorldClim/BioClim
pre Mean precipitation, 1950–2000 WorldClim/BioClim
ele  Elevation HydroSHEDS (Lehner et al., 2006)
ele  slope Slope HydroSHEDS-Derived (Lehner et al., 2006)

Converted
vector-format roa dst Distance to roads OSM (2013)

riv dst Distance to rivers/streams OSM (2013)
pop cls, pop dst Generic populated places VMAP0 merged†

wat cls, wat  dst Water bodies World Food Program
pro  cls, pro dst Protected areas IUCN and UNEP, 2012
poi cls, poi dst Populated points OSM (2013)
bui cls, bui dst Buildings OSM (2013)

* The variable names are used in random forest model output and throughout the text as reference to the specific data they were derived from. The first three letters are
derived  from the data type (e.g., “lan” indicates land cover) and the last three letters, if present, indicates what type of data each variable represents (e.g., “ cls” is a binary
classification and “ dst” is a calculated Euclidean distance-to variable.
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post-processing, however, the overall accuracy improves to 85%
and the omission error decreases from 87% to below 19%. Satis-
fied with the relative accuracy of detecting urban areas using the
NDSV classifier on the GEE system, the process was applied to three

Table 2
Confusion matrices for Kota Manado without (top) and with (bottom) the spatial
post-processing step (Fig. 4).

Overall accuracy = (2242/4000) 56.05%
Ground truth (pixels)

Class Urban Non-urban Total
Urban 245 3 248
Non  urban 1755 1997 3752
Total 2000 2000 4000

Overall accuracy = (3398/4000) 84.95%
Ground truth (pixels)
† The default data for populated places is merged from several VMAP0 data sourc
re  buffered to 100 m and merged with the pop/builtupa polygons creating a vector
se  in modeling. (NGA, 2005)

ack-transforming the log to arrive at an estimate of per-pixel pop-
lation density. Medians and percentile ranges were also assessed
s alternative approaches for prediction; however, the back-
ransformed mean consistently out-performed the alternative
ummary methods during validation. The resulting country-wise
opulation density map  was then used as a weighting layer for

 standard dasymetric mapping approach as described for the
friPop and AsiaPop (now WorldPop) data sets by (Gaughan et al.,
013; Linard et al., 2012; Linard and Tatem, 2012; Tatem et al.,
007).

ccuracy assessment
The four output population maps produced using administra-

ive level 1 input census data (Fig. 1), were then compared to the
evel 2 census counts to provide one method of assessing mapping
ccuracies, following Gaughan et al. (2013). The individual cell val-
es of the output population maps represent people per cell, and
ere then added together for each census unit. These “predicted”

ums were then compared with the observed census counts within
ach unit. Summary statistics were then calculated, including root
ean square error (RMSE), the RMSE divided by the mean census

nit count (%RMSE) and the mean absolute error (MAE). Together
hese statistics were used to compare the predictive ability of each

ethodology.

esults

rban extraction results
For the urban extraction results in the test areas, all of
hem referring to Landsat scenes recorded in 2007, the vali-
ation was performed as follows: human settlement extents were
ere are three VMAP0 data sets used: The point data pop/builtupp and pop/mispopp
d built layer. This layer is then converted to binary class and distance-to rasters for

manually digitized from Very High Resolution (VHR) Quickbird
images available in Google EarthTM, and recoded in 2007, if pos-
sible in the same month of the corresponding Landsat scene. The
relatively small cities of Manado and Bandung, as well as the big
urban agglomeration of Jakarta were considered.

The mapping results are shown in Fig. 4, while the quan-
titative validation results for Manado with and without spatial
post-processing (see section ‘Implementation of the normalized
difference spectral vector index stack into the Google earth engine’)
are reported in Table 2. Visually, the approach shows an accurate
extraction of the human settlement extents at the pixel level, with
a few misclassifications outside the actual urban area, and missing
areas within the boundary of the larger blocks. The quantitative
evaluation shows instead a large omission error percentage. After
Class Urban Non-urban Total
Urban 1625 227 1852
Non  urban 375 1773 2148
Total 2000 2000 4000
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ig. 3. General structure of the data processing and map  production procedure used
tems  that are specific to the research presented here and not part of end-user map
lue  represent random forest model estimation, per-pixel prediction and dasymetr

ollections on the Google Earth Engine, and then integrated with
he MDA  land cover dataset. This combined land cover dataset,
sing the GEE-derived built area delineations was then applied
o the population mapping process and evaluated statistically for
rediction accuracy.

A small sample of the urban extents generated for tests 2, 3, and
 are shown in Fig. 5 for the central part of Jakarta along with the
rban extents for the same area in the MDA  data set.

andom forest statistical output

The differences between results are determined by the ancillary
atasets used in the population mapping detailed in Table 1.

Referring to the covariate names in Table 1, there are
wo significant covariates in the random forest mapping
rocess, “BLT” (Built) and “lig” (VIIRS Nightlights). Table 3 provides
ome insight into the importance of the variables in the map-
ing process by showing how much mean squared error (MSE)

ncreases when the specified covariate is randomly permuted and
redictions re-calculated. The most important variables include the
BLT” covariates, indicating “Built” areas, which include urban and
ural settlements. In addition, for all tests, except for test 4 (GEE
008–2010), the “lig” (VIIRS Nightlights data) have higher impor-
ance than other covariates.
Table 3 also displays the increase in node purity in each test,
hich documents reduction in residual sum of squared error for

he predictions at the ends of the branches of each tree when
he specified variable is used during the random forest mapping
pare the methodology outlined in Stevens et al. (2014). The orange boxes represent
product generation. The green boxes represent data preprocessing stages. Items in
istribution of census counts.

process. Again referring to the variables detailed in Table 1, we
show that the “BLT” (built) classes with the GEE integrations in tests
2, 3, and 4 are the most important in the random forest process.

Again referring to the variables detailed in Table 1, it can be
observed that the “BLT” classes with the GEE integrations in tests
2, 3, and 4 are making the built classes the most important in the
random forest process.

Random forest accuracy assessment

The accuracy assessment process detailed in Section 2.3.3 shows
how much the urban extents improve the output when the census
data were aggregated from district to province. The tests in the
previous sections detail how well the RF does in predicting pop-
ulation values at the census unit level, but more importantly is
whether the population map produced using built land cover data
from the three GEE-derived approaches is better at redistributing
the population numbers from coarser census units. Two  different
error assessment methods are presented: root mean square error
(RMSE), also expressed as a percentage of the mean population size
of the administrative level (% RMSE); and the mean absolute error
(MAE).

For both RMSE and MAE, the results in Table 4 indicate that
test 4 increased population mapping accuracy the most, with test 3

slightly better than test 1. Notably, the urban extraction from test
2, which used built extents derived from years 2006 to 2008, had
the lowest redistribution accuracy. It is notable that the land cover
changes allow for test 3 and test 4 to outperform the MDA  dataset
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Fig. 4. Human settlement extraction results

n reducing error, creating more concurrent built data to correlate
etter with our other datasets.

iscussion and conclusions

The possibilities that the Google Earth Engine offers in ana-
yzing remotely sensed data on a global scale with the power of
oogle’s cloud computing are substantial. The inclusion of con-

inuously updated Landsat data along with classification tools and
ignificant processing power will enable newer and more accurate
ays to map  human settlements across large areas at 30 m spatial

esolution, document past changes, and continually update current
stimates. The potential of this resource has been recently illus-
rated for multitemporal forest mapping (Hansen et al., 2013), and
ere we outline initial steps for similar efforts in human settlement
nd population mapping.

The application of the NDSV within the GEE shows significant

otential for settlement mapping within the tool. Characterizing
uman settlements can be considered as a binary problem, but
here the “non-urban” class is very heterogeneous. It therefore

equires a classifier which is nonparametric, i.e., that does not
anado, Bandung, and Jakarta, in Indonesia.

assume any peculiar statistical distributions of the input values.
Moreover, since the NDSV is built through a composition of 15
bands, the classifier has to be able to manage high-dimensional
spaces. Therefore, classifiers developed for hyperspectral data are
preferable, using, for example, the spectral angle mapper classi-
fier (Angiuli and Trianni, 2014), that captures the differences in
multispectral vectors and is robust with respect to difference in
illumination. Since this classifier is not available in the GEE envi-
ronment, support vector machines (SVM) and classification and
regression trees (CART) were considered instead (Earthengine-api,
2014), with similarly strong results shown.

Both the SVM and CART are suitable to binary problems, but our
tests suggested that CART produced more accurate urban extent
maps. The statistical indices explored in the random forest pop-
ulation mapping process in Table 3 highlight to what degree the
distance to “built” environments (lan dstBLT) covariate plays a role
in reducing error and increasing the quality of the output of the

population mapping process. When the focus was on which vari-
able, if removed, would increase the RMSE, the GEE experiments
(tests 2, 3, and 4) showed that the distance to “built” covariate
was an important one. Table 3 also reflects the same results in
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Fig. 5. A small sample of the area around central Jakarta used in the tests. Test 1 displays the EarthSat GeoCover Land Cover Thematic Mapper from MDA  Federal (reflecting
extents  from 2007). Tests 2, 3, and 4 represent the Google Earth Engine-derived extents that are merged into Test 1. Test 2 integrates urban areas from 3 collections from
2 m 3 co
c  Fede
E

i
i
c
t
o
t

T
T
s

006,  2007, and 2008 (a collection for each year), test 3 integrates urban areas fro
ollection for each year). Classifications reflected in the Legend are all from the MDA
arth  Engine derived NDSV extents.

ncreasing node purity in the process. It is important to note that
n tests 2 and 4, urban extents extracted in 3 consecutive years are

ombined, while in test 3 a single year is considered. Test 2 showed
he greatest amount of error, utilizing urban extents that were
btained from the GEE for years 2006, 2007, and 2008. It is clear
hat the modification of the land cover from test 1 for the same time

able 3
op five statistical outputs: percent increase of mean squared error when variable is ra
elected  for decision tree node.

Percent increase of mean squared error when variable randomly permuted

Test 1 (MDA) (total of 23 covariates used), (81% variance explained) T
20.2  (lights) 1
12.7 (landcover distance to built areas) 1
10.8 (distance to populated points) 1
9.24  (distance to buildings) 7
9.08  (landcover distance to cultivated terrestrial areas) 7
Test  3 (GEE 2009) (total of 22 covariates used), (83% variance explained) T
19.3  (lights) 1
16.5  (landcover distance to built areas) 1
9.13 (distance to populated points) 8
7.13  (distance to roads) 7
6.90  (landcover distance to cultivated terrestrial reas) 7
Total decrease in residual sum of squares when covariate used
Test 1 (MDA) (total of 23 covariates used), (81% variance explained) T
53.8  (lights) 4
31.7 (landcover distance to built areas) 4
19.1 (distance to roads) 1
17.2  (distance to populated points) 1
16.9 (distance to buildings) 1
Test  3 (GEE 2009) (total of 22 covariates used), (83% variance explained) T
56.5  (landcover distance to built areas) 5
46.6 (lights) 4
15.3 (distance to roads) 1
13.5(distance to populated points) 1
9.76  (distance to generic populated places, VMAP0) 1
llections in 2009, and test 4 integrates urban areas from 2008, 2009, and 2010 (a
ral dataset other than the “Urban Area” class, which was obtained from the Google

period reflected in test 2, changes the areas within Jakarta signifi-
cantly. The improved accuracy of test 1 over test 2 could just reflect

a better correlation of values instead of informing what is mak-
ing the data more spatially significant, and in that circumstance,
it can be argued that the GEE urban extents can be a critical com-
ponent in the creation of multitemporal datasets that can modify

ndomly permuted and total decrease in residual sum of squares when variable is

est 2 (GEE 2006–2008) (total of 22 covariates used), (83% variance explained)
8.4 (lights)
7.4 (landcover distance to built areas)
0.6 (distance to populated points)
.91 (distance to generic population places, VMAP0)
.79 (landcover distance to cultivated terrestrial areas)
est 4 (GEE 2008–2010) (total of 23 covariates used), (84% variance explained)
9.8 (landcover distance to Built Areas)
8.8 (lights)
.00 (distance to populated points)
.77 (landcover distance to cultivated terrestrial areas)
.23 (Distance to roads)

est 2 (GEE 2006–2008) (total of 22 covariates used), (83% variance explained)
9.3 (landcover distance to built areas)
3.7 (lights)
7.7 (distance to populated points)
6.9 (distance to roads)
3.7(distance to buildings)
est 4 (GEE 2008–2010) (total of 23 covariates used), (84% variance explained)
8.4 (landcover distance to built areas)
5.3 (lights)
5.3 (distance to roads)
2.0 (distance to populated points)
1.2 (distance to buildings)
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Table  4
Accuracy assessment results for four urban land cover treatments.

RMSE %RMSE MAE

Test 1 (MDA) 1450.286 0.129064 787.8362
Test 2 (GEE 2006–2008) 2277.501 0.20268 1352.685
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Test 3 (GEE 2009) 1377.889 0.122621 773.6329
Test 4 (GEE 2008–2010) 1346.32 0.119812 759.3168

xisting land cover datasets in order to examine trends, in an effi-
ient manner, for different years. Table 4 shows how the integration
f GEE extents correlates well in the population mapping process
nd decreases error, by adding more concurrent built data along
ith our other covariate datasets.

In using census data from 2010, land cover data closest to this
ear stands a better chance of being the best proxy for disaggrega-
ion if all other factors are equal. In this sense, there is an inherent
ias in the tests, but it also highlights the benefits of the GEE
pproach, that is being able to produce an accurate urban extent
ap  for any time period, with the ability to match up land cover

ata to particular census dates.
Overall, the NDSV is shown here to be a reliable method to detect

rban extents, especially when using a powerful tool to analyze the
ata such as the GEE. Moreover, the GEE represents one of the most
owerful tools offered today in remote sensing with its ability to
nalyze and classify remotely sensed data over different tempo-
al scales. Finally, the use of NDSV derived extents produced in
he GEE and integrated in a flexible population mapping method
nables testing of the validity of the classifications in improving
opulation distribution mapping, providing an additional novel
ccuracy assessment approach. As urbanization processes continue
o accelerate in many countries around the world, accurate, pow-
rful, and efficient methods for rapid mapping of settlements and
heir changes, as well as populations within them are a prereq-
isite for strategic planning and impact assessments. The results
ere point towards the integration of classification and population
apping methods within GEE as a way of meeting this need.
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